• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 6
  • 2
  • Tagged with
  • 33
  • 33
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area

Pérez Simbor, Sofía 16 December 2019 (has links)
[ES] La población mundial en países desarrollados está envejeciendo y con ello existe un aumento de enfermedades en gran medida causadas por la edad. Las nuevas tecnologías médicas pueden ayudar a detectar, diagnosticar y tratar estas enfermedades y con ello ahorrar dinero, tiempo y recursos de los sistemas sanitarios. Las tecnologías inalámbricas implantables han abierto un nuevo panorama para la próxima generación de tecnologías médicas. Frecuencias como la Ultra Wide-Band (UWB) de 3.1 a 10.6 GHz están siendo consideradas para la nueva generación de dispositivos inalámbricos para dentro del cuerpo humano. Las características como el reducido tamaño de las antenas, la baja potencia de transmisión y la alta velocidad de datos son las más buscadas en este tipo de dispositivos. El problema surge porque el cuerpo humano depende de la frecuencia de modo que a mayores frecuencias, mayores son las pérdidas por propagación. Conociendo el canal de transmisión se puede solventar el problema de las altas pérdidas. Esta tesis tiene como objetivo caracterizar el canal de radio frecuencia (RF) para la nueva generación de dispositivos médicos implantables. Para caracterizar el canal se han empleado tres diferentes metodologías: simulaciones numéricas, medidas en phantom y experimentos en animales vivos. Las medidas en phantom fueron realizadas en un nuevo sistema de medidas expresamente disen¿ados para medidas de dentro a fuera del cuerpo humano en la banda de frecuencias UWB. Además, se utilizó un novedoso recipiente con dos capas de phantom imitando la zona gastrointestinal del cuerpo. Estos phantoms fueron creados para este tipo de medidas y son extremadamente precisos a las frecuencias UWB. Para los experimentos en animales se utilizaron cerdos y se intentó reproducir en ellos las medidas previamente realizadas en phantom. Las simulaciones software se realizaron con la intención de replicar ambas metodologías. Una vez realizados los experimentos se realizó un extensivo estudio del canal en dominio frecuencial y temporal. Mas en detalle, se compararon las antenas usadas en la recepción y transmisión, el efecto de la grasa en el canal, la formas del recipiente contenedor de phantom y las componentesmulticamino. Como resultado se ha propuesto un modelo de propagación del canal para la banda baja de las frecuencias UWB (3.1 -5.1 GHz) para la zona gastrointestinal del cuerpo humano. Este modelo de propagación ha sido validado utilizando las tres metodologías previamente descritas y comparada con otros estudios existentes en literatura. Finalmente, se midió el canal de propagación para una determinada aplicación a bajas frecuencias con señales UWB. También se realizaron medidas del canal de propagación en la zona cardíaca del cuerpo humano desde un punto de vista de seguridad de datos. Los resultados obtenidos en esta tesis confirman los beneficios que tendría la utilización de frecuencias UWB para las futuras generaciones de dispositivos médicos implantables. / [CA] La població mundial a països desenvolupats està envellint-se i enfrontant-se a un augment d'infermetats principalment causades per la edat. Les noves tecnologies mèdiques poden ajudar a detectar, diagnosticar i tractar aquestes malalties, estalviant diners, temps i recursos sanitaris. Els dispositius implantables sense fils han generat un nou panorama per a les noves generacions de dispositius mèdics. Les freqüències com la banda de UWB estan sent considerades per a les futures tecnologies implantables. La reduïda grandària de les antenes, la baixa potència de transmissió i les altes velocitats de dades son característiques buscades per als dispositius implantables. Per contra, els éssers humans depenen de la freqüència en el sentit que a majors freqüències, majors les pèrdues per propagació quan el senyal travessa el cos humà d'interior a exterior. Per solventar aquestes pèrdues el canal de propagació s'ha d'entendre i conèixer de la millor manera possible. Aquesta tesi doctoral te com a objectiu caracteritzar el canal de radio freqüència (RF) per a la nova generació de dispositius mèdics implantables. S'han emprat tres metodologies diferents per a realitzar aquesta caracterització: simulacions software, mesures amb fantomes i experiments amb animals vius. Els experiments amb fantomes es van realitzar a un sistema de mesures dissenyat expressament per a les transmissions de dins a fora del cos humà a les freqüències UWB. També es van utilitzar un contenidor per als fantomes de dues capes, imitant l'area gastrointestinal dels humans. Per als experiments a animals es van emprar porcs, replicant els experiments al laboratori en fantomes de la forma més semblant possible. Les simulacions software foren dissenyades per a imitar les experiments amb fantomes i animals. Després dels experiments el canal de propagació es va investigar exhaustivament des del domini freqüèncial i temporal. S'ha observat com les antenes en transmissió i recepció afecten al senyal, la influència de la grassa, la forma del contenidor de fantoma i les possibles contribucions multicamí. Finalment es proposa un nou model de propagació per a les baixes freqüències UWB (3.1 a 5.1 GHz) per a la zona GI del cos humà. El model es va validar utilitzant les tres metodologies abans esmentades i també foren comparades amb model ja existents a la literature. Finalment des d'un punt de vista aplicat, el canal es va avaluar per al senyal UWB a baixes freqüències (60 MHz). A més a més, per a la nova generació de marcapassos sense fil es va investigar el canal des d'un punt de vista de seguretat de dades. Els resultats obtinguts a aquesta tesi confirmen els avantatges d'emprar la banda de freqüències UWB per a la nova generació de dispositius médics implantables. / [EN] The current global population in developed countries is becoming older and facing an increase in diseases mainly caused by age. New medical technologies can help to detect, diagnose and treat illness, saving money, time, and resources of physicians. Wireless in-body devices opened a new scenario for the next generation of medical devices. Frequencies like the Ultra Wide-band (UWB) frequency band (3.1 - 10.6 GHz) are being considered for the next generation of in-body wireless devices. The small size of the antennas, the low power transmission, and the higher data rate are desirable characteristics for in-body devices. However, the human body is frequency ependent, which means higher losses of the radio frequency (RF) signal from in- to out-side the body as the frequency increases. To overcome this, the propagation channel has to be understood and known as much possible to process the signal accordingly. This dissertation aims to characterize the (RF) channel for the future of in-body medical devices. Three different methodologies have been used to characterize the channel: numerical simulations, phantom measurements, and living animals experiments. The phantom measurements were performed in a novel testbed designed for the purpose of in-body measurements at the UWB frequency band. Moreover, multi-layer high accurate phantoms mimicking the gastrointesintal (GI) area were employed. The animal experiments were conducted in living pigs, replicating in the fairest way as possible the phantom measurement campaigns. Lastly, the software simulations were designed to replicate the experimental measurements. An in-depth and detail analysis of the channel was performed in both, frequency and time domain. Concretely, the performance of the receiving and transmitting antennas, the effect of the fat, the shape of the phantom container, and the multipath components were evaluated. Finally, a novel path loss model was obtained for the low UWB frequency band (3.1 - 5.1 GHz) at GI scenarios. The model was validated using the three methodologies and compared with previous models in literature. Finally, from a practical case point of view, the channel was also evaluated for UWB signals at lower frequencies (60 MHz) for the GI area. In addition, for the next generation of leadless pacemakers the security link between the heart and an external device was also evaluated. The results obtained in this dissertation reaffirm the benefits of using the UWB frequency band for the next generation of wireless in-body medical devices. / Pérez Simbor, S. (2019). In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133034
32

Advanced Stochastic Signal Processing and Computational Methods: Theories and Applications

Robaei, Mohammadreza 08 1900 (has links)
Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence. In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance (CMD), spectral overlap, autoregressive process, and Fuzzy entropy to (1) study the (non) stationary behavior of the channel and (2) estimate and track channel parameters. This class of applications is finite-dimensional signals. Compressed sensing demonstrates great capability in sampling finite-dimensional signals. Nevertheless, it does not show the same performance sampling the semi-infinite and infinite-dimensional signals. The second part of the thesis is more theoretical works on compressed sensing toward application. In chapter 4, we leverage the group Fourier theory and the stochastical nature of the directional communication to introduce families of the linear and quadratic family of displacement operators that track the join-distribution signals by mapping the old coordinates to the predicted new coordinates. We have shown that the continuous linear time-variant millimeter-wave channel can be represented as the product of channel Wigner distribution and doubly directional channel. We notice that the localization operators in the given model are non-associative structures. The structure of the linear and quadratic localization operator considering group and quasi-group are studied thoroughly. In the last two chapters, we propose continuous compressed sensing to address infinite-dimensional signals and apply the developed methods to a variety of applications. In chapter 5, we extend Hilbert-Schmidt integral operator to the Compressed Sensing Hilbert-Schmidt integral operator through the Kolmogorov conditional extension theorem. Two solutions for the Compressed Sensing Hilbert Schmidt integral operator have been proposed, (1) through Mercer's theorem and (2) through Green's theorem. We call the solution space the Compressed Sensing Karhunen-Loéve Expansion (CS-KLE) because of its deep relation to the conventional Karhunen-Loéve Expansion (KLE). The closed relation between CS-KLE and KLE is studied in the Hilbert space, with some additional structures inherited from the Banach space. We examine CS-KLE through a variety of finite-dimensional and infinite-dimensional compressible vector spaces. Chapter 6 proposes a theoretical framework to study the uniform convergence of a compressible vector space by formulating the compressed sensing in locally convex Hausdorff space, also known as Fréchet space. We examine the existence of an optimum subspace comprehensively and propose a method to compute the optimum subspace of both finite-dimensional and infinite-dimensional compressible topological vector spaces. To the author's best knowledge, we are the first group that proposes continuous compressed sensing that does not require any information about the local infinite-dimensional fluctuations of the signal.
33

Advanced Electro-Quasistatic Human Body Communication and Powering: From Theory to Application for Internet of Bodies

Arunashish Datta (19207768) 07 August 2024 (has links)
<p dir="ltr">Decades of semiconductor technology scaling and breakthroughs in communication technology have miniaturized computing, embedding it everywhere, enabling the development of smart things connected to the internet, forming the Internet of Things. Further miniaturization of devices has led to an exponential increase in the number of devices in and around the body in the last decade, forming a subset of IoT which is increasingly becoming popular as the Internet of Bodies (IoB). The gradual shift from the current form of human-electronics coexistence to human-electronics cooperation, is the vision of Internet of Bodies (IoB). This vision of a connected future with devices in and around our body talking to each other to assist their day-to-day functions demands energy efficient means of communication. Electro-Quasistatic Human Body Communication (EQS-HBC) has been proposed as an exciting alternative to traditional Radio Frequency based methodologies for communicating data around the body. In this dissertation, we expand the boundaries of wearable and implantable IoB nodes using Electro-Quasistatic Human Body Communication and Powering by developing advanced channel models and demonstrating novel applications.</p><p dir="ltr">Leveraging the advanced channel models developed for wearable EQS-HBC, we demonstrate wearable applications like ToSCom which extend the use cases of touchscreens to beyond touch detection and location to enable high-speed communication strictly through touch. We further demonstrate an application of EQS Resonant Human Body Powering to demonstrate Step-to-Charge, allowing mW-scale wireless power transfer to wearable devices. With increasing connected implanted healthcare devices becoming a part of the IoB space, we benchmark RF-based technologies for In-Body to Out-of-Body (IBOB) communication using novel in-vivo experiments. We then explore EQS-HBC in the realm of IBOB communication using advanced channel modeling, revealing its potential for low-power and physically secure data transfer from implantable devices to wearable nodes on the body, demonstrating its potential in extending the battery life span of implantable nodes. Finally, an overview of the potential of IoB devices is analyzed with the use of EQS-HBC where we propose a human-inspired distributed network of IoB nodes which brings us a step closer to the potential for perpetually operable devices in and around the body.</p>

Page generated in 0.033 seconds