• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Accuracy of Wireless Capsule Endoscope RF and Visual Localization

Zhou, Mingda 29 April 2015 (has links)
Wireless capsule endoscope (WCE) is becoming one of the most patient-friendly inspection device which provides visual investigation of entire gastrointestinal (GI) tract, while the other traditional (wired) endoscopic devices are usually designed for colon inspection. Locating abnormalities tract such as tumors, polyps and bleedings with wire-connected endoscope in GI tract is simple as long as we could measure the length of the wires inside human body. When WCE is applied, however, this becomes a critical challenge of examination since there is no wires connected to WCE while physicians need to find the exact locations of WCE to identify the position of abnormalities. To locate the WCE accurately, methods have come up in last decade including time of arrival (TOA) based methods, received signal strength (RSS) based methods, phase difference of arrival (PDOA) based methods, electromagnetic methods and video-based tracking methods, etc.. In this thesis, time of arrival (TOA), phase difference of arrival (PDOA) and video based localization methods are proposed and their performance are analyzed. We first propose an novel video-based tracking technique based on maximum mutual information. With this technique, we can tell the displacement and rotation between consecutive frames. Then in TOA chapter, the Cramer-Rao lower bound (CRLB) of TOA ranging inside homogeneous tissue is calculated first then three TOA ranging methods are proposed and compared with the CRLB which is used as the performance guideline. After that, PDOA based ranging technique is applied exploiting phase difference of two signals. Since the phase difference is taken into consideration, the ranging ambiguity is eliminated. We also evaluate the performance of the proposed PDOA ranging method. Finally, these ranging methods are evaluated in non-homogeneous tissues, the results of which are also compared to that in homogeneous tissue to analyze the impact of non-homogeneity.
2

Determining Client Effort: Understanding Therapists' Practices

Boutcher, Nancy 15 March 2013 (has links)
For over 20 years occupational therapists have been using functional capacity evaluations to provide information about individuals’ ability to work after a musculoskeletal injury. An important component of these evaluations is the determination of the clients’ level of effort during the assessment. Only when a client puts forth high effort are the results considered an accurate measure of their work ability. This qualitative study explored therapists’ perception of the process of determining effort. Consistent with the literature, the results show that effort is a complex construct that is not easily defined, understood, or consistently assessed in practice. The participants in this study spoke about their own struggles defining, explaining, and assessing effort within the medico-legal context of an insurance system. The study results suggest support is needed for clinicians to navigate multiple client contexts, and the term ‘effort’ needs to be conceptualized in line with current knowledge about disability.
3

Location and Tracking for Ultra-WideBand In-Body Communications in Medical Applications

Barbi, Martina 13 December 2019 (has links)
[ES] La cápsula inalámbrica de endoscopia (WCE) es una tecnología notable y atractiva adoptada en el sector biomédico hace varios años. WCE proporciona una tecnología de imagen inalámbrica no invasiva que permite a los especialistas reconocer y diagnosticar enfermedades que afectan todo el tracto gastrointestinal. Aunque los médicos pueden recibir imágenes claras de anomalías en el tracto gastrointestinal, no tienen información sobre sus exacta ubicación. La localización precisa de los trastornos detectados es crucial para el posterior procedimiento de extracción mediante cirugía. Actualmente, la banda de frecuencia asignada para aplicaciones de cápsula endoscópica es la banda MICS (402-405 MHz) que ofrece una velocidad de datos de hasta 500 kbps, insuciente para transmitir imágenes de alta calidad. Recientemente, la tecnología de banda ultra ancha (UWB) ha estado atrayendo atención como posible candidato para la próxima generación de cápsula endoscópica. Las ventajas de UWB incluyen arquitecturas de transceptor simples que permiten bajo consumo de potencia, baja interferencia a otros sistemas y amplio ancho de banda que resulta en comunicaciones a una velocidad de datos más alta. En esta disertación, el rendimiento de las técnicas de localización de WCE basadas en radiofrecuencia (RF) se investiga a través de simulaciones software, medidas experimentales de laboratorio que involucran fantomas homogéneos y heterogéneos y a través de experimentos in vivo que constituyen el escenario de prueba más realista. La tecnología UWB (3.1-10.6 GHz) se considera como interfaz de comunicación para aplicaciones de cápsula endoscópica. En tal escenario, el transmisor inalámbrico está ubicado en el tracto gastrointestinal, mientras que uno o más receptores inalámbricos están ubicados sobre la supercie del cuerpo. El enfoque basado en la potencia recibida (RSS) se investiga principalmente debido a su simplicidad de implementación y menos sensibilidad a las limitaciones de ancho de banda. Se analiza el impacto de la posición y del número de receptores seleccionados en la precisión de la localización. Finalmente, se desarrolla una interfaz gráfica de usuario (GUI) para visualizar los resultados de la localización en tres dimensiones (3D) obtenidos mediante las medidas in vivo. / [CAT] La càpsula sense fil d'endoscòpia (WCE) és una tecnologia notable i atractiva adoptada en el sector biomèdic fa diversos anys. La WCE proporciona una tecnologia d'imatge sense fil no invasiva que permet als especialistes reconéixer i diagnosticar malalties que afecten tot el tracte gastrointestinal. Encara que els metges poden rebre imatges clares d'anomalies en el tracte gastrointestinal, no tenen informació sobre les seues exacta ubicació. La localització precisa dels trastorns detectats és crucial per al posterior procediment d'extracció mitjançant cirurgia. Actualment, la banda de freqüència assignada per a aplicacions de càpsula endoscòpica és la banda MICS (402-405 MHz) que ofereix una velocitat de dades de fins a 500 kbps, insucient per a transmetre imatges d'alta qualitat. Recentment, la tecnologia de banda ultra ampla (UWB) ha estat atraient atenció com a possible candidata per a la pròxima generació de càpsula endoscòpica. Els avantatges d' UWB inclouen arquitectures de transceptor simples que permeten un baix consum de potència, baixa interferència amb altres sistemes i una gran amplada de banda que resulta en comunicacions a una velocitat de dades més alta. En aquesta dissertació, el rendiment de les tècniques de localització de WCE basades en radiofrequència (RF) s'investiga a través de simulacions amb programari, mesures experimentals de laboratori que involucren fantomes homogenis i heterogenis i a través d'experiments in vivo que constitueixen l'escenari de prova més realista. La tecnologia UWB (3.1-10.6 GHz) es considera com a interfície de comunicació per a aplicacions de càpsula endoscòpica. En tal escenari, el transmissor sense fil està situat en el tracte gastrointestinal, mentre que un o més receptors sense fils estan situats sobre la superfície del cos. L'enfocament basat en la potència rebuda (RSS) s'investiga principalment a causa de la seua simplicitat d'implementació i menys sensibilitat a les limitacions d'amplada de banda. S'analitza l'impacte de la posició i del numere de receptors seleccionats en la precisió de la localització. Finalment, es desenvolupa una interfície gràca d'usuari (GUI) per a visualitzar els resultats de la localització en tres dimensions (3D) obtinguts mitjançant les mesures in vivo. / [EN] Wireless Capsule Endoscopy (WCE) is a remarkable and attractive technology adopted in the biomedical sector several years ago. It provides a non-invasive wireless imaging technology for the entire gastrointestinal (GI) tract. WCE allows specialists to recognize and diagnose diseases affecting the whole GI tract. Although physicians can receive clear pictures of abnormalities in the GI tract, they have no information about their exact location. Precise localization of the detected disorders is crucial for the subsequent removal procedure by surgery. Currently, the frequency band allocated for capsule endoscopy applications is the MICS band (402-405 MHz). This band offers data rate up to 500 kbps, which is insufficient to transmit high quality images. Recently, Ultrawideband (UWB) technology has been attracting attention as potential candidate for next-generation WCE systems. The advantages of UWB include simple transceiver architectures enabling low power consumption, low interference to other systems and wide bandwidth resulting in communications at higher data rate. In this dissertation, performance of WCE localization techniques based on Radio Frequency (RF) information are investigated through software simulations, experimental laboratory measurements involving homogeneous and heterogeneous phantom models and in vivo experiments which constitute the most realistic testing scenario. Ultra-Wideband technology (3.1-10.6 GHz) is considered as communication interface in Wireless Capsule Endoscopy. In such scenario, the wireless transmitter is located in the gastrointestinal track while one or more wireless receivers are located over the surface of the body. Received Signal Strength (RSS)-based approach is mainly explored due to its implementation simplicity and less sensitivity to bandwidth limitations. Impact of the position and the number of selected receivers on the localization accuracy is analyzed. Finally, a graphical user interface (GUI) is developed to visualize the three-dimensional (3D) localization results obtained through in vivo measurements. / Barbi, M. (2019). Location and Tracking for Ultra-WideBand In-Body Communications in Medical Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/132874 / TESIS
4

Ultraschnelle, lichtinduzierte Primärprozesse im elektronisch angeregten Zustand des Grün Fluoreszierenden Proteins (GFP) / Ultrafast Elementary Events in the Excited State of Green Fluorescent Protein (GFP)

Winkler, Kathrin 24 January 2003 (has links)
No description available.
5

Επαγωγική ζεύξη ισχύος για ενεργά εμφυτεύσιμα ιατροτεχνολογικά προϊόντα / Inductively coupled power systems for active implantable medical devices

Αθανασόπουλος, Παναγιώτης 19 April 2010 (has links)
Στην παρούσα διπλωματική εργασία αναζητείται ένας αυτόματος τρόπος ελέγχου, του επιπέδου της εκπεμπόμενης ισχύος προς το εσωτερικό του ανθρωπίνου σώματος. Εκεί μέσα βρίσκεται κάποιο ενεργό ιατροτεχνολογικό εμφύτευμα. Αυτό το εμφύτευμα στην περίπτωση της εργασίας αυτής, ήταν μία κάψουλα που καταγράφει με φωτογραφίες το γαστρεντερικό σύστημα καθώς οι περισταλτικές κινήσεις του εντέρου προωθούν την κάψουλα προς την έξοδο. Οι φωτογραφίες μεταδίδονται προς καταγραφικό που βρίσκεται έξω από το σώμα με ασύρματο τρόπο. Όπως καταλαβαίνουμε η κάψουλα αυτή αλλά και οποιοδήποτε άλλο ενεργό ιατροτεχνολογικό εμφύτευμα έχει ενεργειακές ανάγκες για την απρόσκοπτη λειτουργία του. Αυτές οι ανάγκες καλύπτονται με ασύρματη μετάδοση ενέργειας. Οι καινοτομίες που υπάρχουν σ’ αυτήν την εργασία είναι οι εξής: 1. Όσον αφορά το εξωτερικό τροφοδοτικό χρησιμοποιήθηκε ένας αντιστροφέας συντονισμού κλάσης D 2. Το πιο καινοτόμο στοιχείο είναι η δημιουργία κλειστού βρόχου ελέγχου μεταξύ του εξωτερικού τροφοδοτικού και του εμφυτεύματος ώστε αυτό να λαμβάνει την ποσότητα της ενέργειας που χρειάζεται κάθε στιγμή. 3. Επίσης σημαντικό είναι ότι η μετάδοση πληροφορίας από το εμφύτευμα προς τα έξω δεν γίνεται με μία ξεχωριστή συχνότητα αλλά χρησιμοποιώντας αρχές παθητικής τηλεμετρίας. Η εργασία αυτή πέρα από την θεωρητική προσέγγιση υλοποιήθηκε και πρακτικά σε εργαστήρια του πανεπιστημίου KUL (ESAT MICAS) στο Βέλγιο. Ο Βρόγχος ελέγχου λειτούργησε και πολλά συμπεράσματα εξάχθηκαν για περεταίρω βελτιώσεις. Η δομή του παρόντος πονήματος είναι ως εξής: Μετά την αρχική εισαγωγή το δεύτερο κεφάλαιο μας δίνει ένα θεωρητικό υπόβαθρο για την ασύρματη μετάδοση ενέργειας. Στη συνέχεια τα διάφορα μέρη των ηλεκτρονικών κυκλωμάτων που αναπτύχθηκαν αναλύονται διεξοδικά στα επόμενα κεφάλαια. Τέλος καταγράφονται τα συμπεράσματα και προτείνονται πιθανές βελτιώσεις για το μέλλον. / In this diploma thesis a way to have an automated control of the transmitted power level into the human body is sought. Inside the body there is an active medical implant. This implant in the case of this project is a swallowable capsule-camera that captures images along the GI tract as the peristaltic propulusion of the bowel push the capsule towards the exit. The photos are transmitted wirelessly to a special recording device that is located out of the body. It is obvious that not only this capsule but any other active medical implant needs energy to operate uninterrupted. This necessary energy is given through inductive power transmission. Innovations in this project are these: 1. The power supply outside the body is realized with Class-D resonant inverter topology. 2. The most innovative is the effectuation of closed control loop between the outer power supply and the implant in order to be received from the implant the exact amount of power that is needed every instant. 3. Also significant is that the transmission of data from the implant to the controlled power supply is not be done with a different carrier but using passive telemetry principles. Beyond the theoretic approximation that was made for this project, it was also realized in KUL university laboratories (ESAT MICAS) in Belgium. The closed control loop functioned properly and conclusions for further development are inferred. The structure of this diploma thesis is as follows: After the starting introduction the theoretic background for wireless inductive power transmission is given in chapter 2. Following, the different parts of the electronic circuits that were developed are analyzed comprehensively in next chapters. Finally conclusions are registered and future improvements are proposed.
6

In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area

Pérez Simbor, Sofía 16 December 2019 (has links)
[ES] La población mundial en países desarrollados está envejeciendo y con ello existe un aumento de enfermedades en gran medida causadas por la edad. Las nuevas tecnologías médicas pueden ayudar a detectar, diagnosticar y tratar estas enfermedades y con ello ahorrar dinero, tiempo y recursos de los sistemas sanitarios. Las tecnologías inalámbricas implantables han abierto un nuevo panorama para la próxima generación de tecnologías médicas. Frecuencias como la Ultra Wide-Band (UWB) de 3.1 a 10.6 GHz están siendo consideradas para la nueva generación de dispositivos inalámbricos para dentro del cuerpo humano. Las características como el reducido tamaño de las antenas, la baja potencia de transmisión y la alta velocidad de datos son las más buscadas en este tipo de dispositivos. El problema surge porque el cuerpo humano depende de la frecuencia de modo que a mayores frecuencias, mayores son las pérdidas por propagación. Conociendo el canal de transmisión se puede solventar el problema de las altas pérdidas. Esta tesis tiene como objetivo caracterizar el canal de radio frecuencia (RF) para la nueva generación de dispositivos médicos implantables. Para caracterizar el canal se han empleado tres diferentes metodologías: simulaciones numéricas, medidas en phantom y experimentos en animales vivos. Las medidas en phantom fueron realizadas en un nuevo sistema de medidas expresamente disen¿ados para medidas de dentro a fuera del cuerpo humano en la banda de frecuencias UWB. Además, se utilizó un novedoso recipiente con dos capas de phantom imitando la zona gastrointestinal del cuerpo. Estos phantoms fueron creados para este tipo de medidas y son extremadamente precisos a las frecuencias UWB. Para los experimentos en animales se utilizaron cerdos y se intentó reproducir en ellos las medidas previamente realizadas en phantom. Las simulaciones software se realizaron con la intención de replicar ambas metodologías. Una vez realizados los experimentos se realizó un extensivo estudio del canal en dominio frecuencial y temporal. Mas en detalle, se compararon las antenas usadas en la recepción y transmisión, el efecto de la grasa en el canal, la formas del recipiente contenedor de phantom y las componentesmulticamino. Como resultado se ha propuesto un modelo de propagación del canal para la banda baja de las frecuencias UWB (3.1 -5.1 GHz) para la zona gastrointestinal del cuerpo humano. Este modelo de propagación ha sido validado utilizando las tres metodologías previamente descritas y comparada con otros estudios existentes en literatura. Finalmente, se midió el canal de propagación para una determinada aplicación a bajas frecuencias con señales UWB. También se realizaron medidas del canal de propagación en la zona cardíaca del cuerpo humano desde un punto de vista de seguridad de datos. Los resultados obtenidos en esta tesis confirman los beneficios que tendría la utilización de frecuencias UWB para las futuras generaciones de dispositivos médicos implantables. / [CA] La població mundial a països desenvolupats està envellint-se i enfrontant-se a un augment d'infermetats principalment causades per la edat. Les noves tecnologies mèdiques poden ajudar a detectar, diagnosticar i tractar aquestes malalties, estalviant diners, temps i recursos sanitaris. Els dispositius implantables sense fils han generat un nou panorama per a les noves generacions de dispositius mèdics. Les freqüències com la banda de UWB estan sent considerades per a les futures tecnologies implantables. La reduïda grandària de les antenes, la baixa potència de transmissió i les altes velocitats de dades son característiques buscades per als dispositius implantables. Per contra, els éssers humans depenen de la freqüència en el sentit que a majors freqüències, majors les pèrdues per propagació quan el senyal travessa el cos humà d'interior a exterior. Per solventar aquestes pèrdues el canal de propagació s'ha d'entendre i conèixer de la millor manera possible. Aquesta tesi doctoral te com a objectiu caracteritzar el canal de radio freqüència (RF) per a la nova generació de dispositius mèdics implantables. S'han emprat tres metodologies diferents per a realitzar aquesta caracterització: simulacions software, mesures amb fantomes i experiments amb animals vius. Els experiments amb fantomes es van realitzar a un sistema de mesures dissenyat expressament per a les transmissions de dins a fora del cos humà a les freqüències UWB. També es van utilitzar un contenidor per als fantomes de dues capes, imitant l'area gastrointestinal dels humans. Per als experiments a animals es van emprar porcs, replicant els experiments al laboratori en fantomes de la forma més semblant possible. Les simulacions software foren dissenyades per a imitar les experiments amb fantomes i animals. Després dels experiments el canal de propagació es va investigar exhaustivament des del domini freqüèncial i temporal. S'ha observat com les antenes en transmissió i recepció afecten al senyal, la influència de la grassa, la forma del contenidor de fantoma i les possibles contribucions multicamí. Finalment es proposa un nou model de propagació per a les baixes freqüències UWB (3.1 a 5.1 GHz) per a la zona GI del cos humà. El model es va validar utilitzant les tres metodologies abans esmentades i també foren comparades amb model ja existents a la literature. Finalment des d'un punt de vista aplicat, el canal es va avaluar per al senyal UWB a baixes freqüències (60 MHz). A més a més, per a la nova generació de marcapassos sense fil es va investigar el canal des d'un punt de vista de seguretat de dades. Els resultats obtinguts a aquesta tesi confirmen els avantatges d'emprar la banda de freqüències UWB per a la nova generació de dispositius médics implantables. / [EN] The current global population in developed countries is becoming older and facing an increase in diseases mainly caused by age. New medical technologies can help to detect, diagnose and treat illness, saving money, time, and resources of physicians. Wireless in-body devices opened a new scenario for the next generation of medical devices. Frequencies like the Ultra Wide-band (UWB) frequency band (3.1 - 10.6 GHz) are being considered for the next generation of in-body wireless devices. The small size of the antennas, the low power transmission, and the higher data rate are desirable characteristics for in-body devices. However, the human body is frequency ependent, which means higher losses of the radio frequency (RF) signal from in- to out-side the body as the frequency increases. To overcome this, the propagation channel has to be understood and known as much possible to process the signal accordingly. This dissertation aims to characterize the (RF) channel for the future of in-body medical devices. Three different methodologies have been used to characterize the channel: numerical simulations, phantom measurements, and living animals experiments. The phantom measurements were performed in a novel testbed designed for the purpose of in-body measurements at the UWB frequency band. Moreover, multi-layer high accurate phantoms mimicking the gastrointesintal (GI) area were employed. The animal experiments were conducted in living pigs, replicating in the fairest way as possible the phantom measurement campaigns. Lastly, the software simulations were designed to replicate the experimental measurements. An in-depth and detail analysis of the channel was performed in both, frequency and time domain. Concretely, the performance of the receiving and transmitting antennas, the effect of the fat, the shape of the phantom container, and the multipath components were evaluated. Finally, a novel path loss model was obtained for the low UWB frequency band (3.1 - 5.1 GHz) at GI scenarios. The model was validated using the three methodologies and compared with previous models in literature. Finally, from a practical case point of view, the channel was also evaluated for UWB signals at lower frequencies (60 MHz) for the GI area. In addition, for the next generation of leadless pacemakers the security link between the heart and an external device was also evaluated. The results obtained in this dissertation reaffirm the benefits of using the UWB frequency band for the next generation of wireless in-body medical devices. / Pérez Simbor, S. (2019). In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133034 / TESIS
7

Veranschaulichung subzellulärer physikalischer Kräfte biochemischen und mechanischen Ursprungs mittels FRET / Insights into the spatiotemporal regulation of the cellular cytoskeleton through applications of FRET

Mitkovski, Miso 03 November 2005 (has links)
No description available.
8

Solvatationsdynamik an biologischen Grenzschichten / Solvation dynamics at biological interfaces

Seidel, Marco Thomas 05 November 2003 (has links)
No description available.

Page generated in 0.411 seconds