Spelling suggestions: "subject:"[een] COLLECTOR"" "subject:"[enn] COLLECTOR""
11 |
Performance optimization of a subsonic Diffuser-Collector subsystem using interchangeable geometriesBoehm, Brian Patrick 09 January 2013 (has links)
A subsonic wind tunnel facility was designed and built to test and optimize various diffuser-collector box geometries at the one-twelfth scale. The facility was designed to run continuously at an inlet Mach number of 0.42 and an inlet hydraulic diameter Reynolds number of 340,000. Different combinations of diffusers, hubs, and exhaust collector boxes were designed and evaluated for overall optimum performance. Both 3-hole and 5-hole probes were traversed into the flow to generate multiple diffuser inlet and collector exit performance profile plots. Surface oil flow visualization was performed to gain an understanding of the complex 3D flow structures inside the diffuser-collector subsystem. The cutback radial hardware was found to increase the subsystem pressure recovery by over 10% from baseline resulting in an approximate 1% increase in gas turbine power output. / Master of Science
|
12 |
Concentrating Collector for Torsång District Heating SystemFilatov, Artem January 2018 (has links)
In this thesis report for Dalarna University in Borlange and Absolicon company the study of a possibility to add an array of concentrating solar collectors to a Torsång district heating system was done. The whole idea of this work was to make a simulation of this kind of system, trying to get 15-20% of solar fraction, and make an economical evaluation. At the same time, another goal was to make two comparisons: between concentrating and flat-plate collector in the same system, and between two tools for collector analysis – Polysun and Absolicon tool, based on TRNSYS, which was designed to estimate the output of the collector for a certain temperature, without any load. During the study, the analysis of the simulating tools was made and the combination of those two tools was used. Using long iteration cycles, involving changing the field layout, number of collectors and distance between collector rows in flat-plate collector case, both types of collectors were analyzed. The method of the analysis was to get an equal output of the field and see the differences, which appear while using different collector types.
|
13 |
Polymeric solar-thermal flat-plate collectorsReiter, Christoph Nikolaus January 2014 (has links)
State-of-the-art solar-thermal flat-plate collectors suffer from a limited potential to decrease production costs for the necessary higher economic benefit of so-lar-thermal systems. Costly metallic materials and corresponding manufactur-ing processes prevent further cost reductions. For that issues, plastic materials can offer a promising approach. The main hurdle for the use of cost-effective plastics lies in the high thermal loads on the collector components — absorber and insulation — which were identified in a field-testing. The necessary overheating protection approaches to lower these thermal loads were investigated in a literature review. A large number of relevant concepts was evaluated related to achievable temperature reduction, influence on solar yield, additional costs and intrinsic safety. There-fore, a mathematical model was developed to determine the solar-thermal col-lector´s behaviour in a solar-thermal system for hot water and space heating. This way, the most promising overheating concepts were simulated and ana-lysed with regard to component temperatures and system performance. Omitting the selective absorber coating and reducing the backside insulation was found to be the most suitable solution for component materials with limited temperature resistance like polypropylene. In the second part of the research, collector design concepts were developed on the basis of the characteristics of plastic material processing. The identified unit costs showed savings of more than 50 % in comparison to stateof- the-art collectors. The analysis regarding temperature loads and annual solar yield by simulation proved the performance of the concepts. The collector costs and the simulation results were used to define the total costs of the solar-thermal sys-tems and to evaluate the economic benefits by means of the collector con-cepts. The benefits were similar to state-of-the-art set-ups. Thus, further adjustments at system level are necessary to lower the total costs. Therefore, the system set-up has to be harmonised with the collector requirements and investigated in detail.
|
14 |
The experimental tests and analysis of a PEM fuel cellWu, Chien-Lung 05 July 2000 (has links)
The experimental tests and analysis of a fuel cell unit and a 150 W fuel cell stack are performance in this research. The experimental items in this study are various the types of flow channels, fasten torque, inlet gas pressure, Pt loading density, oxidizers, electron collector type etc. Through above a series of the tests, we can understand the key factors which influence the performance of the PEMFC. The experimental results can also provide us references when one assemble a fuel cell stack in future.
PEMFC can start quickly at low temperature and achieves stable output voltage. When the 8 N-M torque is applied to fasten the reaction chamber, the contact resistance between electrode and electron collector reaches a minimum value. By designing the flow channel properly, the membrane hydration can remain a good state so that the conductivity of the proton exchange membrane can not be hinder. We found that the optimum channel among three types of the test channels is the conventional channel with the rib width 2 mm. When the output power is largest.
Our experiments display that the increase of Pt loading in cathode can improve PEMFC performance. At certain voltage, there is a critical value in Pt loading. PEMFC performance can not be improved when Pt loading increases over this value. When the inlet pressure in cathode side increase to 10~20 psi higher than the pressure in anode side, the output power can improve apparently.
Keyword: Proton exchange membrane, Pt loading, electron collector.
|
15 |
A Numerical study for the Heat Transfer in a Water Tank for Solar Heater Water SystemYang, Chi-Hao 25 July 2000 (has links)
ABSTRACT
The natural convection phenomenon in solar energy water trough for stable loading on a wall is studied numerically in this paper. Governing equations are transformed in vorticity-stream equations. Gauss-Seidel method with finite-difference implicit scheme was applied. The effects of the parameters of Rayleigh number, heat pipe length, heat pipe thickness, the distance from heat pipe to down side of water trough and the studied angle of inclination. The results indicate that the heat transfer coefficients increase with the Rayleigh number, the heat pipe length, the heat pipe thickness and the angle of inclination.
|
16 |
L’objet de collection entre la mort de l’être et la naissance de la communautéGamache, Léa 31 January 2012 (has links)
This thesis examines how the concept and act of collection describes a relationship with the material world that clashes with Marxist traditions. Tracing how collected objects behave semiotically, this work defends the idea that one's relation to collected objects necessitates their complete possession in order to delimit the cycling of one's singularity, between "I" and the "Other;" and, at the level of community, the collected objects (e.g., in a museum) additionally show how we attempt to make an "oeuvre" of the world. This thesis demonstrates that the death of the collector exposes an irreconcilable disjunction between the object's meaning—which disappears with the arrival of the collector's death—and the object's shell, which is left as a witness or reminder of the incommensurability of human singularity and finitude. The museum is therefore understood as an attempt to overcome the limited realities of this objective shell, generating an infinite circulation of sense, or of a life that never quite ends. / Graduate
|
17 |
Radial and Axial Designs for Magnetic Absorbent Collector in WaterRenzetti, Andrew John 08 1900 (has links)
The use of collection systems for magnetic sorbents such as Magnetic Activated Carbon are discussed in order to gauge their efficacy in marine environments. Two collectors were built and tested, one which utilized a radial orientation of magnets and another with axially placed magnets. The two systems underwent a series of test with differing linear velocities and angular velocities. From the results, the axial system outperformed its radial counterpart, being most effective with a relatively high concentration of discs placed in series. The medium concentration, however, proved increasingly effective with higher velocities, meaning an optimization concentration exists for this design. The radial system was tested with high and low concentrations of small and large magnets, respectively. The larger magnets, although providing less concentration points in the alternating array, proved more effective for the collection of MAC. From these tests several new innovations were suggested, including belt tensioners, add on mechanisms, and a hybridized design in order to fully optimize the collection of MAC.
|
18 |
Computer Model Verification and Testing of an Apricus AP-30 Evacuated Tube Collector ArrayJanuary 2011 (has links)
abstract: Evacuated tube solar thermal collector arrays have a wide range of applications. While most of these applications are limited in performance due to relatively low maximum operating temperatures, these collectors can still be useful in low grade thermal systems. An array of fifteen Apricus AP-30 evacuated tube collectors was designed, assembled, and tested on the Arizona State University campus in Tempe, AZ. An existing system model was reprogrammed and updated for increased flexibility and ease of use. The model predicts the outlet temperature of the collector array based on the specified environmental conditions. The model was verified through a comparative analysis to the data collected during a three-month test period. The accuracy of this model was then compared against data calculated from the Solar Rating and Certification Corporation (SRCC) efficiency curve to determine the relative performance. It was found that both the original and updated models were able to generate reasonable predictions of the performance of the collector array with overall average percentage errors of 1.0% and 1.8%, respectively. / Dissertation/Thesis / M.S. Mechanical Engineering 2011
|
19 |
Desenvolvimento de uma bancada para ensaios de coletores solares de tubos de vidro a vácuoManea, Tiago Francisco January 2012 (has links)
Sistemas de aquecimento de água que utilizam a conversão de energia solar em energia térmica, além de serem um meio fácil e limpo de geração de energia, trazem benefícios econômicos ao país e principalmente a quem os utiliza. O elemento principal destes sistemas, o coletor solar, é objeto de estudo neste trabalho. Coletores planos são amplamente utilizados e possuem uma tecnologia consolidada, porém, um tipo de coletor composto por tubos de vidro, com isolamento a vácuo e superfície absorvedora seletiva vem se tornando uma opção cada vez mais viável economicamente. Com benefícios evidentes em climas de frio mais intenso, estes coletores devem ter seus parâmetros de desempenho térmico determinados segundo procedimentos normativos, para que possam ser dimensionados de forma correta os sistemas de aquecimento que os utilizarem. Este trabalho descreve o desenvolvimento de uma bancada de ensaios construída no Laboratório de Energia Solar da Universidade Federal do Rio Grande do Sul, que tem o intuito de possibilitar o ensaio deste tipo de coletor. Esta bancada contou com uma instrumentação cuidadosamente calibrada e com um dispositivo, desenvolvido neste trabalho, capaz de realizar medidas da diferença de temperatura da água entre as seções de entrada e saída do coletor com uma incerteza inferior a 0,05 °C. Foram realizados ensaios individuais de dois tubos a vácuo de superfícies absorvedoras distintas desacoplados do coletor. Um ensaio determinou seu coeficiente de transferência de calor e outro avaliou as propriedades ópticas de cada tubo. A metodologia experimental utilizada se mostrou válida e possível de determinar alguns parâmetros para utilização em simulações. Um melhor desempenho do tubo com superfície seletiva de (Al-N/SS/Cu) em relação ao que utiliza (Al-N/Al) ficou evidente nestes ensaios. Foi realizado na bancada desenvolvida o ensaio de um coletor de tubos de vidro a vácuo que utiliza o principio de transferência direta. Sua curva de eficiência e seus parâmetros de desempenho foram determinados sob condições de regime permanente. Houve pequena diferença entre os valores obtidos e os fornecidos pelo fabricante, o que deve ter ocorrido, em parte, devido à diferença das condições de realização dos ensaios. A curva de desempenho obtida neste trabalho para o coletor de tubos de vidro a vácuo foi comparada às curvas de dois coletores planos. Nesta comparação ficou evidente que o coletor ensaiado é mais eficiente em situações onde a diferença entre a temperatura da água no interior do coletor e temperatura ambiente são maiores. / The use of solar systems for heating water brings economic benefits to the country and especially to the users. Furthermore, it is an easy and clean form of energy generation. The solar collector, the main element of such systems, is the object of the present study. Flat plane collectors are widely used and have a consolidated technology. However, the market share of tubular evacuated glass collectors is rapidly increasing. These collectors are constituted by elements consisting in two concentrical tubes with vacuum in between. Instead of using a black painted sheet of metal as the absorbing element, the internal glass tube is coated with a selective surface. The vacuum provides a high level insulation, with evident benefits in severe cold climates. In order to allow a correct sizing of systems employing such collectors, their thermal performance parameters must be determined according to standard procedures. This work show the description of a test system, built at Laboratório de Energia Solar of Universidade do Rio Grande do Sul, which enable the testing of this type of collector. This test system features a carefully calibrated instrumentation and a device, developed in this work, for measuring the water temperature difference between the collector inlet and outlet with an accuracy of 0.05 °C. A test for estimating the thermal losses and the optical properties of two evacuated tubes with different selective surfaces (Al-N/SS/Cu e Al-N/Al) was also performed. The better performance of the tube with the selective surface deposited on a copper layer was. The experimental methodology was proven to be valid and useful for determining some parameters used in simulations. A test based on the current Brazilian standard with a solar collector with twenty water-in-glass vacuum tubes was performed. Its efficiency curve and its performance parameters were determined under steady state conditions. Some differences between the obtained values and manufacturer data were detected, probably due to the difference between the test conditions. The efficiency curve obtained for the tubular solar collector was compared to the curves of two flat plane collectors. This comparison indicated that the tested collector is more efficient under situations in which the difference between the temperature of the water inside the collector and the ambient temperature are higher.
|
20 |
Desenvolvimento de uma bancada para ensaios de coletores solares de tubos de vidro a vácuoManea, Tiago Francisco January 2012 (has links)
Sistemas de aquecimento de água que utilizam a conversão de energia solar em energia térmica, além de serem um meio fácil e limpo de geração de energia, trazem benefícios econômicos ao país e principalmente a quem os utiliza. O elemento principal destes sistemas, o coletor solar, é objeto de estudo neste trabalho. Coletores planos são amplamente utilizados e possuem uma tecnologia consolidada, porém, um tipo de coletor composto por tubos de vidro, com isolamento a vácuo e superfície absorvedora seletiva vem se tornando uma opção cada vez mais viável economicamente. Com benefícios evidentes em climas de frio mais intenso, estes coletores devem ter seus parâmetros de desempenho térmico determinados segundo procedimentos normativos, para que possam ser dimensionados de forma correta os sistemas de aquecimento que os utilizarem. Este trabalho descreve o desenvolvimento de uma bancada de ensaios construída no Laboratório de Energia Solar da Universidade Federal do Rio Grande do Sul, que tem o intuito de possibilitar o ensaio deste tipo de coletor. Esta bancada contou com uma instrumentação cuidadosamente calibrada e com um dispositivo, desenvolvido neste trabalho, capaz de realizar medidas da diferença de temperatura da água entre as seções de entrada e saída do coletor com uma incerteza inferior a 0,05 °C. Foram realizados ensaios individuais de dois tubos a vácuo de superfícies absorvedoras distintas desacoplados do coletor. Um ensaio determinou seu coeficiente de transferência de calor e outro avaliou as propriedades ópticas de cada tubo. A metodologia experimental utilizada se mostrou válida e possível de determinar alguns parâmetros para utilização em simulações. Um melhor desempenho do tubo com superfície seletiva de (Al-N/SS/Cu) em relação ao que utiliza (Al-N/Al) ficou evidente nestes ensaios. Foi realizado na bancada desenvolvida o ensaio de um coletor de tubos de vidro a vácuo que utiliza o principio de transferência direta. Sua curva de eficiência e seus parâmetros de desempenho foram determinados sob condições de regime permanente. Houve pequena diferença entre os valores obtidos e os fornecidos pelo fabricante, o que deve ter ocorrido, em parte, devido à diferença das condições de realização dos ensaios. A curva de desempenho obtida neste trabalho para o coletor de tubos de vidro a vácuo foi comparada às curvas de dois coletores planos. Nesta comparação ficou evidente que o coletor ensaiado é mais eficiente em situações onde a diferença entre a temperatura da água no interior do coletor e temperatura ambiente são maiores. / The use of solar systems for heating water brings economic benefits to the country and especially to the users. Furthermore, it is an easy and clean form of energy generation. The solar collector, the main element of such systems, is the object of the present study. Flat plane collectors are widely used and have a consolidated technology. However, the market share of tubular evacuated glass collectors is rapidly increasing. These collectors are constituted by elements consisting in two concentrical tubes with vacuum in between. Instead of using a black painted sheet of metal as the absorbing element, the internal glass tube is coated with a selective surface. The vacuum provides a high level insulation, with evident benefits in severe cold climates. In order to allow a correct sizing of systems employing such collectors, their thermal performance parameters must be determined according to standard procedures. This work show the description of a test system, built at Laboratório de Energia Solar of Universidade do Rio Grande do Sul, which enable the testing of this type of collector. This test system features a carefully calibrated instrumentation and a device, developed in this work, for measuring the water temperature difference between the collector inlet and outlet with an accuracy of 0.05 °C. A test for estimating the thermal losses and the optical properties of two evacuated tubes with different selective surfaces (Al-N/SS/Cu e Al-N/Al) was also performed. The better performance of the tube with the selective surface deposited on a copper layer was. The experimental methodology was proven to be valid and useful for determining some parameters used in simulations. A test based on the current Brazilian standard with a solar collector with twenty water-in-glass vacuum tubes was performed. Its efficiency curve and its performance parameters were determined under steady state conditions. Some differences between the obtained values and manufacturer data were detected, probably due to the difference between the test conditions. The efficiency curve obtained for the tubular solar collector was compared to the curves of two flat plane collectors. This comparison indicated that the tested collector is more efficient under situations in which the difference between the temperature of the water inside the collector and the ambient temperature are higher.
|
Page generated in 0.0452 seconds