• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 76
  • 61
  • 16
  • 11
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 518
  • 219
  • 125
  • 76
  • 75
  • 74
  • 68
  • 64
  • 62
  • 60
  • 47
  • 42
  • 40
  • 39
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Solution and Adsorption Characterization of Novel Water-Soluble Ionic Block Copolymers for Stabilization of Magnetite Nanoparticles

Caba, Beth Lynn 22 May 2007 (has links)
There is a need for multifunctional polymer-particle complexes for use in biomedical applications such as for drug delivery or as MRI contrast agents where composition and stability are essential for the complexes to function. This work outlines a general methodology for rationally designing complexes stabilized with polymer brush layers using adapted star polymer models for brush extension and pair potential. Block copolymer micelles were first utilized for experimental validation by using the brush extension model to predict the size and the interaction model to predict the second virial coefficient, A2. Subsequently, the models were used to predict the size and colloidal stability of magnetite-polymer complexes using the modified Deryaguin-Verwey-Landau-Overbeek theory. Novel hydrophilic triblock copolymers comprised of poly(ethylene oxide) tailblocks and a carboxylic acid containing polyurethane center block were examined by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS), and densiometry. Under conditions when the charge is suppressed such as at low pH and/or high ionic strength, the polymer chains self-assemble into micelles, whereas unimers alone are present under conditions where charge effects are important, such as high pH and low ionic strength. A model for effective interaction between star polymers was used to obtain an expression for the second virial coefficient (A2) for micelles in solution. The values of A2 obtained using this method were compared with experimentally determined values for star polymers and micelles. In doing so, not only was a new means of calculating A2 a priori introduced, but the applicability of star polymer expressions to micellar systems was established. Through the analogy of micelles to sterically stabilized nanoparticles, this model was applied to water-soluble block copolymers adsorbed on magnetite nanoparticles for the purpose of tailoring a steric stabilizing brush layer. The sizes of the magnetite-polymer complexes were predicted using the star polymer model employed for the micelle study with an added layer to account for the anchor block. Colloidal stability was predicted from extended DLVO theory using the pair interaction. This work will lead to a better understanding of how to design ion-containing block copolymers for steric stabilization of metal oxide nanoparticles. / Ph. D.
422

Crystallization and Melting Behavior of Linear Polyethylene and Ethylene/Styrene Copolymers and Chain Length Dependence of Spherulitic Growth Rate for Poly(Ethylene Oxide) Fractions

Huang, Zhenyu 04 November 2004 (has links)
The crystallization and melting behavior of linear polyethylene and of a series of random ethylene/styrene copolymers was investigated using a combination of classical and temperature modulated differential scanning calorimetry. In the case of linear polyethylene and low styrene content copolymers, the temporal evolutions of the melting temperature, degree of crystallinity, and excess heat capacity were studied during crystallization. The following correlations were established: 1) the evolution of the melting temperature with time parallels that of the degree of crystallinity, 2) the excess heat capacity increases linearly with the degree of crystallinity during primary crystallization, reaches a maximum during the mixed stage and decays during secondary crystallization, 3) the rates of shift of the melting temperature and decay of the excess heat capacity lead to apparent activation energies that are very similar to these reported for the crystal ac relaxation by other techniques. Strong correlations in the time domain between the secondary crystallization and the evolution of the excess heat capacity suggest that the reversible crystallization/melting phenomenon is associated with molecular events in the melt-crystal fold interfacial region. In the case of higher styrene content copolymers, the multiple melting behavior at high temperature is investigated through studies of the overall crystallization kinetics, heating rate effects and partial melting. Low melting crystals can be classified into two categories according to their melting behavior, superheating and reorganization characteristics. Low styrene content copolymers still exhibit some chain folded lamellar structure. The shift of the low melting temperature with time in this case is tentatively explained in terms of reorganization effects. Decreasing the crystallization temperature or increasing the styrene content leads to low melting crystals more akin to fringed-micelles. These crystals exhibit a lower tendency to reorganize during heating. The shift of their melting temperature with time is attributed to a decrease in the conformational entropy of the amorphous fraction as a result of constraints imposed by primary and secondary crystals. To further understand the mechanism of formation of low melting crystals, quasi-isothermal crystallization experiments were carried out using temperature modulation. The evolution of the excess heat capacity was correlated with that of the melting behavior. On the basis of these results, it is speculated that the generation of excess heat capacity at high temperature results from reversible segmental exchange on the fold surface. On the other hand, the temporal evolution of the excess heat capacity at low temperature for high styrene content copolymers is attributed to the reversible segment attachment and detachment on the lateral surface of primary crystals. The existence of different mechanisms for the generation of excess heat capacity in different temperature ranges is consistent with the observation of two temperature regimes for the degree of reversibility inferred from quasi-isothermal melting experiments. In a second project, the chain length and temperature dependences of spherulitic growth rates were studied for a series of narrow fractions of poly(ethylene oxide) with molecular weight ranging from 11 to 917 kg/mol. The crystal growth rate data spanning crystallization temperatures in regimes I and II was analyzed using the formalism of the Lauritzen-Hoffman (LH) theory. Our results are found to be in conflict with predictions from LH theory. The Kg ratio increases with molecular weight instead of remaining constant. The chain length dependence of the exponential prefactor, G0, does not follow the power law predicted by Hoffman and Miller (HM). On this basis, the simple reptation argument proposed in the HM treatment and the nucleation regime concept advanced by the LH model are questioned. We proposed that the observed I/II regime transition in growth rate data may be related to a transition in the friction coefficient, as postulated by the Brochard-de Gennnes slippage model. This mechanism is also consistent with recent calculations published by Toda in which both the rates of surface nucleation and substrate completion processes exhibit a strong temperature dependence. / Ph. D.
423

Biodegradable hydrogels based on water-soluble chitosan for cell transplant

Gámiz González, Mª Amparo 02 November 2016 (has links)
[EN] The aim of tissue engineering is to develop functional biological substitutes to replace or restore damaged tissues by preparing three-dimensional scaffolds able to accommodate cells plus signaling factors to promote the regeneration of damaged tissue. There is a special interest in developing scaffolds that while providing a favourable environment for cells also possess a degradation rate that can be adapted to the tissue's rate of regeneration. Scaffolds should be porous and possess a pore morphology adapted to the application for which they are designed. They must also be able to hold large quantities of water (hydrogels) while presenting suitable cell/biomaterial interaction. The aim of this thesis is to create chitosan-based three-dimensional porous structures with tunable degradation rates with particular interest in fast degradation rate. Hydrogels of block-copolymer networks were prepared to crosslink the chitosan (CHT) or carboxymethyl chitosan (CmCHT) with either a hydrophobic polymer of low molecular weight, such as poly(ε-caprolactone), (PCL) or a hydrophilic polymer such as poly(ethylene glycol), (PEG). The hypothesis was that the degradation of the cross-linker polymer leaves behind large water-soluble polymer chains (protonated chitosan or carboxymethyl chitosan). However, in spite of chitosan's favourable properties, the polymer has relatively slow biodegradation times in enzymatic media that contain lysozyme and even slower in hydrolytic conditions. Chitosan's physical and chemical properties largely depend on its deacetylation degree (DD). In order to analyze these properties, chitosan was synthesized with various DD ranging from 85% to 45%. Water absorption was seen to rise rapidly as deacetylation was reduced. This would appear to contradict the fact that chitin water absorption (low DD) is much lower than that of chitosan. In order to understand this behaviour, it was analyzed the dependence of the degree of network swelling on the parameters determined by the Flory Rhener theory, the elastic properties of the network and the density of the cross-linking according to the sample's water content. The thermal stability of chitosan according to its DD was analysed by thermogravimetry. Different methods were applied to obtain the activation energy. Electrospinning was chosen as the porous membrane preparation technique as it provides thin membranes that can be handled with fiber sizes in the order of microns. The influence of the electrospinning and cross-linking processes on the thermal stability of chitosan was analyzed. Chitosan and carboxymethyl chitosan hydrogels covalently cross-linked with short chains of poly(ε-caprolactone), (PCL) and poly(ethylene glycol) (PEG) were synthesized. The formation of networks was confirmed by solubility tests with appropriate solvents for each polymer. Hydrogels that absorbed large quantities of water were obtained, with values that ranged between 90 and 5000%. The calorimetric tests together with the Studies on the kinetics of hydrolytic and enzymatic biodegradation showed three different systems: CmCHT-PEG system that can be classified as stable hydrogel, CHT-PCL system as semidegradable hydrogel and degradable hydrogels with degradation kinetics in the order of days for the CmCHT-PCL system. Finally, biological studies were carried out on porous CmCHT-PCL hydrogels. Mesenchymal stem cells (MSCs) from pig adipose tissue were then cultivated and the results showed that these networks can be used in the organism in tissue engineering applications with degradation times of around a week. / [ES] La ingeniería tisular tiene como finalidad desarrollar sustitutos biológicos funcionales que reemplacen o restauren los tejidos dañados. Se trata de preparar andamiajes tridimensionales (scaffolds) que sean capaces de albergar células y factores de señalización que favorezcan la regeneración del tejido dañado. Existe un especial interés en el desarrollo de scaffolds que proporcionando un entorno favorable a las células, tengan una tasa de degradación que se adapte a velocidad de regeneración del tejido. Los scaffolds deben ser porosos y poseer una morfología del poro adaptada a la aplicación para la que son diseñados. Deben ser capaces de albergar gran cantidad de agua (hidrogeles) al tiempo que presentan una interacción célula/biomaterial adecuada. El objetivo de esta tesis es el de crear estructuras porosas tridimensionales basadas en quitosano con velocidades de degradación ajustables con particular interés en velocidades de degradación altas. Se han preparado hidrogeles de redes de copolimeros en bloque entrecruzando el quitosano, (CHT) o el carboximetil quitosano, (CmCHT) con un polímero hidrófobo de bajo peso molecular como la poli(ε-caprolactona), (PCL) o bien con un polímero hidrófilo como es el poli(etilenglicol), (PEG). La hipótesis de trabajo fue que la degradación del polímero que actúa como entrecruzador debe dejar grandes cadenas del polímero (quitosano protonado o carboximetil quitosano) que son solubles en agua. A pesar de las buenas propiedades del quitosano, el polímero presenta tiempos de biodegradación bastante lentos en medio enzimático conteniendo lisozima y aún más lentos en condiciones hidrolíticas. Las propiedades físico-químicas del quitosano dependen en gran medida del grado de desacetilación, DD. Con el fin de analizar dichas propiedades se ha llevado a cabo la síntesis de quitosano con DD variando entre 85% y el 45%. Se ha comprobado que la absorción de agua aumenta rápidamente a medida que el grado de desacetilación disminuye. Esto parece contradecir el hecho de que la absorción de agua de la quitina (DD bajo) es mucho menor que la de quitosano. Para entender dicho comportamiento se han analizado los parámetros que determinan la teoría de Flory Rhener, las propiedades elásticas de la red y la densidad de entrecruzamiento en función del contenido en agua de la muestra. La estabilidad térmica del quitosano en función de DD ha sido analizada por termogravimetría. Se han aplicado diferentes métodos para obtener la energía de activación. Como técnica de preparación de membranas porosas se ha elegido el electrohilado, ya que permite obtener membranas delgadas y manipulables con tamaños de fibra del orden de micras. Se ha analizado la influencia de los procesos de electrohilado y entrecruzamiento en la estabilidad térmica del quitosano. Se han sintetizado hidrogeles de quitosano, y carboximetil quitosano entrecruzados covalentemente con cadenas cortas de poli(ε-caprolactona), y poli(etilenglicol). La formación de las redes se ha confirmado mediante ensayos de solubilidad con buenos solventes para cada polímero. En todos los casos se han obtenido hidrogeles que absorben gran cantidad de agua con valores que oscilan entre 90 y 5000%. Los estudios de las cinéticas de biodegradación tanto hidrolítica como enzimática revelan la obtención de tres sistemas que se pueden clasificar como hidrogeles estables, para los hidrogeles formados por CmCHT-PEG, hidrogeles semidegradables para el sistema CHT-PCL y finalmente hidrogeles degradables con cinéticas de degradación del orden de días, para el sistema CmCHT-PCL. Finalmente se ha llevado a cabo estudios biológicos de los hidrogeles porosos de CmCHT-PCL. Se realizaron cultivos con células mesenquimales del tejido adiposo de cerdo (MSCs). Los resultados han revelado que dichas redes pueden ser utilizadas como sistemas de liberación de células en el organismo con tiempos de degradación / [CA] L'enginyeria tissular té com a finalitat desenvolupar substituts biològics funcionals que reemplacen o restauren els teixits danyats. Es tracta de preparar suports tridimensionals (esquelets o scaffolds) que siguen capaços d'albergar cèl.lules i factors de senyalització que afavorisquen la regeneració del teixit danyat. Hi ha un interès especial en el desenvolupament d'esquelets que, proporcionant un entorn favorable a les cèl.lules, tinguen una taxa de degradació que s'adapte a la velocitat de regeneració del teixit. Els scaffolds han de ser porosos i han de tenir una morfologia del porus adaptada a l'aplicació per a la qual són dissenyats. Han de ser capaços d'albergar una gran quantitat d'aigua (hidrogels) alhora que presenten una interacció cèl.lula/biomaterial adequada. L'objectiu d'aquesta tesi és crear estructures poroses tridimensionals basades en quitosan amb velocitats de degradació sintonizables amb un interés particular de rutes de degradació altes. S'han preparat hidrogels de xarxes de copolímers en bloc entrecreuant el quitosan o el carboximetil quitosan amb un polímer hidròfob de baix pes molecular com la poli (ε-caprolactona), o bé amb un polímer hidròfil com és el poli (etilenglicol). Es tracta d'aconseguir que quan el polímer que actua com a entrecreuador es degrade, deixe grans cadenes del polímer (quitosan protronat o carboximetil quitosan) que són solubles en aigua. A pesar de les bones propietats del quitosan, el polímer presenta cinètiques de biodegradació lentes en condicions enzimàtiques quan conté lisozima i encara més lentes en condicions hidrolítiques. Les propietats fisicoquímiques del quitosan depenen en gran mesura del grau de desacetilació, DD. A fi d'analitzar aquestes propietats, s'ha dut a terme la síntesi de quitosan amb un DD que variava entre el 85% i el 45%. S'ha comprovat que l'absorció d'aigua augmenta ràpidament a mesura que el grau de desacetilació disminueix. Això sembla que contradiu el fet que l'absorció d'aigua de la quitina (DD baixos) és molt menor que no la de quitosan. Per a entendre aquest comportament s'ha analitzat la dependència del grau d'unflament de la xarxa amb els paràmetres que determina la teoria de Flory Rhener, les propietats elàstiques de la xarxa i la densitat d'entrecreuament en funció del contingut en aigua de la mostra. L'estabilitat tèrmica del quitosan en funció del DD ha sigut analitzada per termogravimetria. S'han aplicat diversos mètodes per obtenir l'energia d'activació. Com a tècnica de preparació de membranes poroses s'ha utilitzat l'electrofilatura, ja que permet obtenir membranes primes i manipulables amb grandàries de fibra de l'ordre de micres. S'ha analitzat la influència dels processos d'electrofilatura i entrecreuament amb l'estabilitat tèrmica del quitosan. S'han sintetitzat hidrogels de quitosan i carboximetil quitosan entrecreuats covalentment amb cadenes curtes de poli(ε-caprolactona) i poli(etilenglicol). La formació de les xarxes s'ha confirmat per mitjà d'assajos de solubilitat amb bons solvents per a cada polímer. En tots els casos s'han obtingut hidrogels que absorbeixen una gran quantitat d'aigua, compresa en valors que oscil.len entre el 90 i el 5.000%. Els estudis de les cinètiques de biodegradació tant hidrolítica com enzimàtica revelen l'obtenció de tres sistemes que es poden classificar com a hidrogels estables (per als hidrogels formats per CmCHT-PEG), hidrogels semidegradables (per al sistema CHT-PCL) i, finalment, hidrogels degradables amb cinètiques de degradació de l'ordre de dies (per al sistema CmCHT-PCL). Finalment s'ha dut a terme estudis biològics dels hidrogels porosos de CmCHT-PCL. Es van realitzar cultius amb cèl.lules mesenquimals del teixit adipós de porc (MSCs). Els resultats han revelat que aquestes xarxes poden ser utilitzades com a sistemes d'alliberament de cèl.lules en l'organisme amb temps de degradació de l'ordre d'una setm / Gámiz González, MA. (2016). Biodegradable hydrogels based on water-soluble chitosan for cell transplant [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73070
424

Synthesis and Characterization of Nanoporous Copolymers with Potential Gas Storage Applications

Zhou, Xu 10 October 2013 (has links)
Nanoporous organic polymers, including hypercrosslinked polymers (HCPs), covalent organic frameworks (COFs), polymers of intrinsic microporosity (PIMs), and conjugated microporous polymers (CMPs) etc., are considered good candidates for potential gas storage and gas separation applications. Porosities and surface areas of a series of semirigid alternating copolymers, which contained tert-butyl carboxylate-functionalized stilbene or tert-butyl carboxylate-functionalized styrene, and maleic anhydride or tert-butyl carboxylate-functionalized phenyl maleimide, were investigated using nitrogen sorption/desorption isotherms at 77 K and molecular simulations. These alternating copolymers were found to have Brunauer-Emmett-Teller (BET) surface areas in the range of 20-40 m2/g. Surface areas of these alternating copolymers increased as the steric crowding of the polymer backbone increased, which was the result of introducing extra phenyl rings and/or N-phenyl substituent maleimide units. Surface areas were found to increase as the persistence length increased. A series of HCPs containing functionalized stilbene and N-substituted phenyl maleimide were synthesized via free radical suspension polymerization. The incorporation of these functionalized, chain stiffening, Tg enhancing comonomers raised the Tgs of precursor polymers before they were crosslinked. Surface areas of these HCPs, obtained from nitrogen adsorption/desorption isotherms at 77 K, were up to 1058 m2/g. However, the surface areas of these HCPs were systematically lower than the controls. The high rigidity of the polymer backbone, which was the result of incorporating Tg enhancing comonomer, likely affected the chain mobility of the precursor polymer, decreased the efficiency of post-crosslinking reactions, and thus resulted in lower surface areas. Amine-functionalized styrene/stilbene polymers were prepared via free radical polymerization or post-modification. Amine-containing silica-based sorbents were prepared using the impregnation method. Sorption of CO2 by these materials was tested using TGA and compared with control samples. Both high amine content and certain levels of surface area were found to be important for a sorbent to achieve high CO2 uptake. Highest CO2 uptake (12 wt%) under our testing condition in these materials was achieved by an amine-containing silica sorbent. / Ph. D.
425

Siloxane-Based Reinforcement of Polysiloxanes: from Supramolecular Interactions to Nanoparticles

Cashman, Mark Francis 01 October 2020 (has links)
Polysiloxanes represent a unique class of synthetic polymers, employing a completely inorganic backbone structure comprised of repeating –(Si–O)n– 'siloxane' main chain linkages. This results in an assortment of diverse properties exclusive to the siloxane bond that clearly distinguish them from the –(C–C)n– backbone of purely organic polymers. Previous work has elucidated a methodology for fabricating flexible and elastic crosslinked poly(dimethyl siloxane) (PDMS) constructs with high Mc through a simultaneous crosslinking and chain-extension methodology. However, these constructs suffer the poor mechanical properties typical of lower molecular weight crosslinked siloxanes (e.g. modulus, tear strength, and strain at break). Filled PDMS networks represent another important class of elastomers in which fillers, namely silica and siloxane-based fillers, impart improved mechanical properties to otherwise weak PDMS networks. This work demonstrates that proper silicon-based reinforcing agent selection (e.g. siloxane-based MQ copolymer nanoparticles) and incorporation provides a synergistic enhancement to mechanical properties, whilst maintaining a low viscosity liquid composition, at high loading content, without the use of co-solvents or heating. Rheological analysis evaluates the viscosity while photorheology and photocalorimetry measurements evaluate rate and extent of curing of the various MQ-loaded formulations, demonstrating theoretical printability up to 40 wt% MQ copolymer nanoparticle incorporation. Dynamic mechanical analysis (DMA) and tensile testing evaluated thermomechanical and mechanical properties of the cured nanocomposites as a function of MQ loading content, demonstrating a 3-fold increase in ultimate stress at 50 wt% MQ copolymer nanoparticle incorporation. VP AM of the 40 wt% MQ-loaded, photo-active PDMS formulation demonstrates facile amenability of photo-active PDMS formulations with high MQ-loading content to 3D printing processes with promising results. PDMS polyureas represent an important class of elastomers with unique properties derived from the synergy between the nonpolar nature, unusual flexibility, and low glass transition temperature (Tg) afforded by the backbone siloxane linkages (-Si-O)n- of PDMS and the exceptional hydrogen bond ordering and strength evoked by the bidentate hydrogen bonding of urea. The work herein presents an improved melt polycondensation synthetic methodology, which strategically harnesses the spontaneous pyrolytic degradation of urea to afford a series of PDMS polyureas via reactions at high temperatures in the presence of telechelic amine-terminated oligomeric poly(dimethyl siloxane) (PDMS1.6k-NH2) and optional 1,3-bis(3-aminopropyl)tetramethyldisiloxane (BATS) chain extender. This melt polycondensation approach uniquely circumvents the accustomed prerequisite of isocyanate monomer, solvent, and metal catalysts to afford isocyanate-free PDMS polyureas using bio-derived urea with the only reaction byproduct being ammonia, a fundamental raw ingredient for agricultural and industrial products. As professed above, reinforcement of polysiloxane materials is ascertained via the incorporation of reinforcing fillers or nanoparticles (typically fumed silica) or blocky or segmented development of polymer chains eliciting microphase separation, in order to cajole the elongation potential of polysiloxanes. Herein, a facile approach is detailed towards the synergistic fortification of PDMS-based materials through a collaborative effort between both primary methods of polysiloxane reinforcement. A novel one-pot methodology towards the facile, in situ incorporation of siloxane-based MQ copolymer nanoparticles into segmented PDMS polyureas to afford MQ-loaded thermoplastic and thermoplastic elastomer PDMS polyureas is detailed. The isocyanate-free melt polycondensation achieves visible melt dispersibility of MQ copolymer nanoparticles (good optical clarity) and affords segmented PDMS polyureas while in the presence of MQ nanoparticles, up to 40 wt% MQ, avoiding post-polymerization solvent based mixing, the only other reported alternative. Incorporation of MQ copolymer nanoparticles into segmented PDMS polyureas provides significant enhancements to modulus and ultimate stress properties: results resemble traditional filler effects and are contrary to previous studies and works discussed in Chapter 2 implementing MQ copolymer nanoparticles into chemically-crosslinked PDMS networks. In situ MQ-loaded, isocyanate-free, segmented PDMS polyureas remain compression moldable, affording transparent, free-standing films. / Master of Science / Polysiloxanes, also referred to as 'silicones' encompass a unique and important class of polymers harboring an inorganic backbone. Polysiloxanes, especially poly(dimethyl siloxane) (PDMS) the flagship polymer of the family, observe widespread utilization throughout industry and academia thanks to a plethora of desirable properties such as their incredible elongation potential, stability to irradiation, and facile chemical tunability. A major complication with the utilization of polysiloxanes for mechanical purposes is their poor resistance to defect propagation and material failure. As a result polysiloxane materials ubiquitously observe reinforcement in some fashion: reinforcement is achieved either through the physical or chemical incorporation of a reinforcing agent, such as fumed silica, or through the implementation of a chemical functionality that facilitates reinforcement via phase separation and strong associative properties, such as hydrogen bonding. This research tackles polysiloxane reinforcement via both of these strategies. Facile chemical modification permits the construction PDMS polymer chains that incorporate hydrogen bonding motifs, which phase separate to afford hydrogen bond-reinforced phases that instill vast improvements to elastic behavior, mechanical and elongation properties, and upper-use temperature. Novel nanocomposite formulation through the incorporation of MQ nanoparticles (which observe widespread usage in cosmetics) facilitate further routes toward improved mechanical and elongation properties. Furthermore, with growing interest in additive manufacturing strategies, which permit the construction of complex geometries via an additive approach (as opposed to conventional manufacturing processes, which require subtractive approaches and are limited in geometric complexity), great interest lies in the capability to additively manufacture polysiloxane-based materials. This work also illustrates the development of an MQ-reinforced polysiloxane system that is amenable to conventional vat photopolymerization additive manufacturing: chemical modification of PDMS polymer chains permits the installation of UV-activatable crosslinking motifs, allowing solid geometries to be constructed from a liquid precursor formulation.
426

Crystallization Behavior, Tailored Microstructure, and Structure-Property Relationships of Poly(Ether Ketone Ketone) and Polyolefins

Pomatto, Michelle Elizabeth 08 April 2024 (has links)
This work investigates the influence of microstructure and cooling and heating rates on the physical and chemical properties of fast crystallizing polymers. The primary objectives were to 1) utilize advanced methodologies to accurately determine the fundamental thermodynamic value of equilibrium melting temperature (Tmo) for the semi-crystalline polymer poly(ether ketone ketone) (PEKK), 2) increase understanding of the influence of microstructure (random versus blocky) of functionalized semi-crystalline polymers on physical and chemical properties, and 3) understand the influence of additive manufacturing process parameters on semi-crystalline polymer crystallization and final properties. All objectives utilized the advanced characterization technique of fast scanning calorimetry (FSC) using the Mettler Toledo Flash DSC 1. The first half of this work focuses on the high-performance semi-crystalline aromatic polymer poly(ether ketone ketone) (PEKK) with a copolymerization ratio of terephthalate to isophthalate moieties (i.e., T/I ratio) of 80/20. Due to the fast heating and cooling rates of the Flash DSC, PEKK underwent melt-reorganization upon heating at slow heating rates. This discovery resulted in utilizing a Hoffman-Weeks linear extrapolation of the zero-entropy production temperature to establish a new equilibrium melting temperature of 382 oC. Additionally, a new NMR solvent, dichloroacetic acid, was discovered for PEKK, allowing for comprehensive NMR analysis of PEKK for the first time. Diphenyl acetone (DPA) was discovered as a novel, benign gelation solvent for PEKK, enabling heterogeneous gel-state bromination and sulfonation to afford blocky microstructures. The gel state functionalization process resulted in a blocky microstructure with runs of pristine crystallizable PEKK retained within the crystalline domains, and amorphous domains containing the functionalized PEKK monomers. The preservation of the pristine crystalline domains resulted in enhanced physical and chemical properties compared to the randomly functionalized analogs. Additionally, heterogeneous gel state functionalization of PEKK gels prepared from different solvents and gelation temperatures resulted in differences in crystallization behavior between blocky microstructures of the same degree of functionalization. This result demonstrates that the blocky microstructure can be tuned through controlling the starting gel morphology. The second half of this work focuses on understanding the influence of cooling and heating rates on the melting, crystal morphology, and crystallization kinetics on isotactic polypropylene (iPP), iPP-polyethylene copolymers (iPP-PE), and iPP/iPP-PE blends and using this information to gain understanding of how these polymers crystallize during the additive manufacturing processes of powder bed fusion (PBF) and material extrusion (MatEx). The crystallization kinetics of iPP, iPP-PE copolymers, and iPP/iPP-PE blends exhibited bimodal parabolic-like behavior attributed to crystallization of the mesomorphic crystal polymorph at low temperatures and the α-form crystal at high temperatures. Incorporation of non-crystallizable polyethylene fractions both covalently and blended as a secondary component, resulted in decreasing crystallization rates, inhibition of crystallization, and decreased crystallizability. Additionally, the non-isothermal crystallization behavior of these systems shows that the non-crystallizable fractions influence the crystal nucleation density and temperature at which polymorphic crystallization occurs. Utilizing in-situ IR thermography in the PBF system, the heating and cooling rates observed for a single-layer PBF print were used to mimic the PBF process by FSC. Partial melting in the printing process leads to self-seeding and increased crystallization onset temperatures upon cooling, which influences the final part melting morphology. Nucleation from surrounding powder and partially melted crystals greatly influences the crystallization kinetics and crystal morphology of the final part. Utilizing rheological experiments and process-relevant cooling rates observed in the MatEx process, the miscibility of iPP/iPP-PE blends influenced the nucleation behavior and crystallization rates, subsequently leading to differences in printed part properties. / Doctor of Philosophy / The crystalline morphology of semi-crystalline polymers depends on their microstructure and thermal history. The resultant crystalline morphology greatly affects the physical and chemical properties. In the first part of this work, the effect of microstructure on material properties is explored. Block copolymer microstructures consist of two or more blocks of distinct polymer segments covalently bonded to one another. This leads to self-organization of the components into unique structural order that would not be attainable if the polymer segments were randomly bonded together. This structural order enhances material properties; thus, block copolymers are advantageous for many applications. However, synthesis of block copolymers can be tedious and expensive. Thus, additional methodologies for block copolymer synthesis are desired. In this work blocky (i.e., statistically non-random) copolymers are synthesized through a facile post-polymerization functionalization method. These blocky copolymers result in enhanced physical and chemical properties compared to the randomly synthesized analogs. This work shows blocky functionalization of a new polymer under new post-polymerization conditions and expands upon the synthesis methodology for block copolymers. In the second part of this work, the effect of heating and cooling rates on the formation of crystals during additive manufacturing is explored. Additive manufacturing modalities of powder bed fusion and material extrusion consist of rapid heating and cooling processes, which can affect how crystals form and ultimately affect the final printed part properties. Using a technique called fast scanning calorimetry, the different heating and cooling rates that the polymer witnesses during printing can be mimicked, and the formation of crystals under these different conditions can be replicated. This mimicking analysis can be related to the printing process and be used to help guide printing processes to enhance printed part properties.
427

Multiscale Transport and Dynamics in Ion-Dense Organic Electrolytes and Copolymer Micelles

Kidd, Bryce Edwin 23 September 2016 (has links)
Understanding molecular and ion dynamics in soft materials used for fuel cell, battery, and drug delivery vehicle applications on multiple time and length scales provides critical information for the development of next generation materials. In this dissertation, new insights into transport and kinetic processes such as diffusion coefficients, translational activation energies (Ea), and rate constants for molecular exchange, as well as how these processes depend on material chemistry and morphology are shown. This dissertation also aims to serve as a guide for material scientists wanting to expand their research capabilities via nuclear magnetic resonance (NMR) techniques. By employing variable temperature pulsed-field-gradient (PFG) NMR diffusometry, which can probe molecular transport over nm – μm length scales, I first explore transport and morphology on a series of ion-conducting materials: an organic ionic plastic crystal, a proton-exchange membrane, and a polymer-gel electrolyte. These studies show the dependencies of small molecule and ion transport on modulations to material parameters, including thermal or magnetic treatment, water content, and/or crosslink density. I discuss the fundamental significance of the length scale over which translational Ea reports on these systems (~ 1 nm) and the resulting implications for using the Arrhenius equation parameters to understand and rationally design new ion-conductors. Next, I describe how NMR spectroscopy can be utilized to investigate the effect of loading a small molecule into the core of a spherical block copolymer micelle (to mimic, e.g., drug loading) on the hydrodynamic radius (rH) and polymer chain dynamics. In particular, I present spin-lattice relaxation (T1) results that directly measure single chain exchange rate kexch between micelles and diffusion results that inform on the unimer exchange mechanism. These convenient NMR methods thus offer an economical alternative (or complement) to time-resolved small angle neutron scattering (TR-SANS). / Ph. D. / Lithium ion batteries, fuel cells, and drug-delivery vehicles each depend on a fundamental understanding of the interface between materials science and molecular dynamics. Optimization of such materials usually requires routine analysis through common polymer characterization techniques. The present dissertation highlights the usage of an uncommon analytical tool to the polymer science community, nuclear magnetic resonance (NMR); and how it gives unprecedented access in gauging material performance when subjected to judicious multiscale analysis. Chemical specificity, non-destructiveness, and the ability to study dynamics on multi-time and length scales are only a few of the many advantages of NMR offers over other polymer characterization techniques. Chapters 3, 4, 5, 6, and 7 investigate different classes of materials for their respective applications to better understand the aforementioned interface. These studies are intended to spark interest in new research areas while supplementing existing ones.
428

Μελέτη της προσρόφησης πολυμερών σε πορώδη υλικά

Μαγιάφα, Μαρία 04 February 2014 (has links)
Στην εργασία αυτή μελετήθηκε o ρυθμός ροής υδατικών διαλυμάτων, σε διάφορα pH περιβάλλοντος, διαμέσου ενός νανοπορώδους υλικού τροποποιημένου με πολυμερικές ψήκτρες. Ειδικότερα, ερευνήθηκε το σύστημα του σύνθετου υλικού πορώδους ανοδικής αλουμίνας με πολυμερικές ψήκτρες του γραμμικού δισυσταδικού συμπολυμερούς πολύ(Ισοπρένιου)–b–πολυ(Ακρυλικού Οξέους) (ΙΑΟ). Η προσρόφηση καθώς και η κινητική προσρόφησης του IAO στο νανοπορώδες υλικό διερευνήθηκε κυρίως μέσω τεχνικών δονητικής φασματοσκοπίας. Πιο συγκεκριμένα με τεχνικές υπερύθρου μετασχηματισμού κατά Φουριέ (Fourier Transform Infrared Spectroscopy ή FT-IR), εγγύ υπερύθρου (N-IR) και Αποσβεννύμενη Ολική Ανάκλαση στο μέσο υπέρυθρο (ATR-IR). Ακόμη, με σκοπό την ποσοτικοποίηση της προσροφημένης ποσότητας του ΙΑΟ εφαρμόστηκε η τεχνική της θερμοσταθμικής ανάλυσης (TGA). Τέλος, για την απόκτηση μιας λεπτομερούς εικόνας σχετικά με τη δομή του σύνθετου νανο-πορώδους υλικού τα δείγματα χαρακτηρίστηκαν και με ηλεκτρονική μικροσκοπία (SEM/EDS). / In the present study the flow rate of aqueous solutions of different pH values through a nanoporous material functionalized with polymeric brushes was investigated using spectroscopic and thermogravimetric methods. In particular, the system under study was a composite material of porous anodic alumina with polymeric brushes of the diblock copolymer poly(Isoprene)–b–poly(Acrylic Acid) (IAO). The adsorption and adsorption kinetics of the IAO onto nanoporous alumina were explored mainly through techniques of vibrational spectroscopy. More specifically Fourier Transformed Infrared Spectroscopy (FT-IR), Near Infrared (N-IR) and Attenuated Total Reflectance (ATR-IR) were employed for this purpose. Moreover, for the quantification of the adsorbed amount of IAO, thermogravimetric analysis was applied (TGA). Finally, to obtain a comprehensive picture of the structure of the nanoporous composite materials used in this study, samples were additionally characterized by electron microscopy (SEM/EDS).
429

Templating gold nanoparticles on nanofibers using block copolymer thin films

Zhu, Hu 09 1900 (has links)
No description available.
430

Conjugated Polymer Brushes (Poly(3-hexylthiophene) brushes): new electro- and photo-active molecular architectures

Khanduyeva, Natalya 21 January 2009 (has links) (PDF)
The aim of the present work was to screen the main methods for the synthesis of conjugated polymers for their suitability in the preparation of conductive polymer brushes. The main focus was put on the grafting of intrinsically soluble substituted regioregular polyalkylthiophenes because of their excellent optoelectronic properties. The resulting polymer films were characterized and their optoelectrical properties studied. For the first time, a synthesis of conductive polymer brushes on solid substrates using “grafting-from” method was performed. The most important, from my opinion, finding of this work is that regioregular head-to-tail poly-3-alkylthiophenes – benchmark materials for organic electronics - can be now selectively grafted from appropriately-terminated surfaces to produce polymer brushes of otherwise soluble polymers - the architecture earlier accessible only in the case of non-conductive polymers. In particular, we developed a new method to grow P3ATs via Kumada Catalyst Transfer Polymerization (KCTP) of 2-bromo-5-chloromagnesio-3-alkylthiophene. Exposure of the initiator layers to monomer solutions leads to selective chain-growth polycondensation of the monomers from the surface, resulting into P3AT brushes in a very economical way. The grafting process was investigated in detail and the structure of the resulting composite films was elucidated using several methods. The obtained data suggests that the grafting process occurs not only at the poly(4-bromstyrene) (PS-Br)/polymerization solution interface, but also deeply inside the swollen PS-Br films, penetrable for the catalyst and for the monomer The grafting process was investigated in detail and the structure of the resulting composite film was elucidated using ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), and Conductive atomic force microscopy (C-AFM). The obtained data suggests that the grafting process occurs not only at the poly(4-bromostyrene), PS-Br/polymerization solution interface, but also deeply inside the swollen PS-Br film, which is penetrable for the catalyst and the monomer. The process results in an interpenetrated PS-Br/P3HT network, in which relatively short poly(3-hexylthiophene), P3HT grafts emanate from long, cross-linked PS-Br chains. A further method investigated during our work was to covalently graft regioirregular P3HT to substrates modified by macromolecular anchors using oxidative polymerization of 3HT with FeCl3. P3HT layers with variable thicknesses from 30 nm up to 200 nm were produced using two steps of polymerization reaction. The P3HT obtained by oxidative polymerization had always an irregular structure, which was a result of the starting monomer being asymmetric, which is undesired for electronic applications. The third method for the production of conductive polymer brushes was to graft regioregular poly(3,3''-dioctyl-[2,2';5',2'']terthiophene) (PDOTT) by electrochemical oxidative polycondensation of symmetrically substituted 3,3''-dioctyl-[2,2';5',2'']terthiophene (DOTT). A modification of the supporting ITO electrode by the self-assembled monolayers (SAMs) of compounds having polymerizable head-groups with properly adjusted oxidative potentials was found to be essential to achieve a covalent attachment of PDOTT chains. The polymer films produced show solvatochromism and electrochromism, as well as the previous two methods. After polymerization, the next step towards building organic electronic devices is applying the methods obtained in nano- and microscale production. Block copolymers constitute an attractive option for such surface-engineering, due to their ability to form a variety of nanoscale ordered phase-separated structures. However, block copolymers containing conjugated blocks are less abundant compared to their non-conjugated counterparts. Additionally, their phase behaviour at surfaces is not always predictable. We demonstrated in this work, how surface structures of non-conductive block copolymers, such as P4VP-b-PS-I, can be converted into (semi)conductive P4VP-b-PS-graft-P3HT chains via a surface-initiated polymerization of P3HT (Kumada Catalyst Transfer Polymerization (KCTP) from reactive surface-grafted block copolymers. This proves that our method is applicable to develop structured brushes of conductive polymers. We believe that it can be further exploited for novel, stimuli-responsive materials, for the construction of sensors, or for building various opto-electronic devices. The methods developed here can in principle be adapted for the preparation of any conductive block copolymers and conductive polymers, including other interesting architectures of conductive polymers, such as block copolymers, cylindrical brushes, star-like polymers, etc. To this end, one needs to synthesize properly-designed and multi-functional Ni-initiators before performing the polycondensation.

Page generated in 0.0604 seconds