• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling Of The Flood Regimes In Coupled Stream-aquifer Systems

Korkmaz, Serdar 01 December 2007 (has links) (PDF)
In this study, hydrogeological modeling of the Somme river basin situated in the north of France was made with special emphasis on the stream-aquifer interaction. The coupled model developed at Ecole des Mines de Paris was used. Geographic Information Systems (GIS) tools were incorporated during all the stages of modeling process for both preparation of input data and visualization of the results of simulations. Initially, the process began with Digital Elevation Model (DEM) analysis. Afterwards, the surface and aquifer grids were generated by using nested grid generators and refinement was made on the stream network and subcatchment boundaries in order to increase the accuracy of numerical solution. In order to run the surface model, meteorological forcing, land use and soil type data were acquired. Surface model was used to partition the precipitation into evapotranspiration, infiltration and surface runoff components. A steady-state piezometric head distribution was computed by the groundwater model to serve as an initial condition to the coupled model. The flow in the unsaturated zone was simulated by using Nash cascade model. The unsteady groundwater and surface flow simulations were performed by taking into consideration the stream-aquifer interaction on a daily time step. The calibration and validation were realized by using the streamflow and piezometric head measurements distributed around the basin. The strong groundwater influence on the hydrology of the basin is well represented by the model. Comparisons of predicted flooded areas in year 2001 were made with other models and a satellite derived image. In the end, several sensitivity analyses were performed for several parameters concerning the groundwater flow.
12

CoModels, engineering dynamic compositions of coupled models to support the simulation of complex systems / CoModels : ingénierie des compositions dynamiques de modèles couplés pour supporter la simulation de systèmes complexes

Huynh, Quang-Nghi 05 December 2016 (has links)
L'objectif initial de cette thèse est d'apporter une solution à ce problème en proposant, premièrement, une approche cognitive basée sur le paradigme appelé Belief-Desire-Intention (BDI) pour représenter les processus de prise de décision des acteurs humains, et deuxièmement, une validation de cette approche dans le contexte d'un modèle complet de changement d'usage des sols dans lequel la plupart des facteurs cités ci-dessus sont également simulés. Le résultat de ce travail est une approche générique qui a été validée sur un modèle intégrant le changement d'usage des sols d'une région située dans le Delta du Mékong au Vietnam. Nos contributions principales sont les suivantes : Intégration d'une architecture BDI au sein d'une plateforme de modélisation à base d'agents (GAMA) ; Conception d'un cadre générique baptisé " Multi-Agent Based Land-Use Change " (MAB-LUC) permettant de modéliser et de simuler les changements d'usage des sols en prenant en compte les décisions des agriculteurs ; Proposition d'une solution permettant d'intégrer et d'évaluer les facteurs socio-économiques et environnementaux dans le cadre de la planification agraire et d'intégrer MAB-LUC dans le processus existant proposé par la FAO. Ce travail, au-delà du cas d'étude concernant le Delta du Mékong, a enfin été conçu de façon générique afin que la méthodologie utilisée puisse être généralisée à la modélisation de systèmes socio-écologiques où les facteurs humains doivent être représentés avec précision. / Integrated modeling approaches (multi-simulation, multimodeling, etc.) have proven challenging in practice. The first challenge deals with the technical aspects of coupling different computational or mathematical components. The second challenge lies in the alignment of the semantics of these components so that their integration does make sense, which is particularly critical in pluridisciplinary models. A number of approaches have been proposed in the last 20 years but none of them is really suitable to our context . We propose in this thesis an alternate approach, called co-modeling, which borrows concepts and tools from agent-based modeling, agent-oriented software engineering and multimodel ecologies. Simply speaking, a co-model can be defined as a multi-agent system of models and datasets. Each model or dataset is represented by one or several agents interacting with one another within the context of a larger representation of their — potentially dynamic — environment. The proposed approach does not aim at providing a general solution to the two challenges above, but at providing a framework in which modelers can easily implement their solution or test different coupling solutions. The proposed approach is fully implemented within the GAMA agent-based modeling platform. Its advantages are shown in terms of flexibility, composability and reusability in a number of case studies. The first case study is the dynamic coupling of equation-based and agent-based models to obtain “switching” models dynamically. The second one is the design of a complex integrated model where three formalisms and four modeling approaches have been successfully coupled.
13

[en] COUPLED TERMOCHEMOPOROELASTIC MODEL FOR WELLBORE STABILITY ANALYSIS IN SHALES / [pt] MODELO ACOPLADO TERMO-QUÍMICO-POROELÁSTICO PARA A ANÁLISE DA ESTABILIDADE DE POÇOS EM FOLHELHOS

EWERTON MOREIRA PIMENTEL DE ARAUJO 07 March 2006 (has links)
[pt] A grande maioria dos problemas de estabilidade de poços de petróleo ocorre em trechos de folhelhos, rochas nas quais, uma especificação eficiente da pressão do fluido de perfuração requer previamente uma especificação correta da concentração salina e da temperatura. Todavia, para um dimensionamento adequado das características do fluido de perfuração necessárias à estabilidade do poço, é necessário o uso de modelos matemáticos que considerem um acoplamento adequado entre efeitos poroelásticos, químicos e térmicos. Entretanto, a complexidade matemática das equações de modelos acoplados normalmente leva à adoção de soluções numéricas, que consomem um tempo computacional muito grande e, por isso, esses modelos não são atrativos à aplicação na análise da estabilidade de poços. Este trabalho apresenta um modelo acoplado termo-químico-poroelástico representado por duas soluções, uma numérica, que utiliza o método dos elementos finitos, e outra analítica, baseada no método das transformadas de Laplace. Ao comparar ambas as soluções é demonstrado que a solução analítica consegue representar tão bem quanto à solução numérica os principais processos acoplados presentes durante a perfuração de folhelhos e que influenciam na sua estabilidade e, por esta razão, pode ser utilizada na análise de estabilidade de poços em folhelhos. Através de um estudo de caso, é verificado que um controle eficiente da estabilidade do poço é obtido especificando a pressão do fluido de perfuração em função da sua temperatura e concentração salina. Estes resultados também indicam as razões de alguns problemas não previstos por modelos desacoplados, e que quase sempre ocorrem durante a perfuração em folhelhos. / [en] Wellbore stability problems are most common when drilling through shales. In order to avoid such problems in this kind of rocks the solute concentration and temperature must be properly defined in the drilling fluid composition, which requires considering poroelastic, thermal and chemical effects in a coupled way. The equations complexity of coupled models usually results in numerical solutions that are very time consuming, thus, unattractive for stability analysis. In an opposite way, it is very difficult to develop closed- form solutions for coupled models. This work presents a thermochemoporoelastic model represented by a numerical solution based upon the finite element method and an analytical solution based upon the Laplace transform method. A comparison between the results of the numerical solution and analytical solution shows that the later can reproduce the coupled processes involved in the wellbore stability problem in shales as well as the former, and for this reason the closed-form solution can be applied as a practical tool in wellbore stability analysis. The analysis of a typical wellbore drilled through shales showed that an efficient control of wellbore stability can be obtained through an adequate specification of the drilling fluid pressure when taking in account its solute concentration and temperature. The model was also able to explain some problems not predicted by uncoupled models, but almost always seen while drilling through shales.
14

Modélisation mixte continue-réseau de pores des transferts diphasiques cathodiques d'une pile à combustible PEMFC / Mixed continuum-pore network modelling of the cathodic diphasic transfers of a fuel cell PEMFC

Belgacem, Najib 14 April 2016 (has links)
Cette thèse présente une contribution à l’étude des transferts d’eau au sein des piles à combustible de type PEMFC, un aspect clé de cette technologie. Une approche de simulation numérique est développée en couplant un modèle de type réseau de pores dans la couche de diffusion (DM), une approche mixte continue –réseau de pore dans la couche microporeuse (MPL) et une modélisation par compartiments dans la couche active. L’approche développée prend en compte les transferts couplés de chaleur et d’eau via notamment la modélisation des phénomènes de changement de phase dans la DM et la MPL (évaporation et condensation). Dans une première partie, nous étudions le cas où l’eau migre dans l’assemblage MPL-DM directement en phase liquide. L’impact de la variation de pression dans la phase gazeuse sur la distribution de la phase liquide est étudié. L’épaisseur optimale de la MPL est également étudiée. Dans une seconde partie, nous étudions des situations où l’eau se forme par condensation dans la couche de diffusion. Nous étudions tout d’abord l’impact des propriétés de la couche de diffusion et de la MPL sur le diagramme de condensation. Ensuite nous analysons l’impact de la formation de l’eau liquide sur la distribution de courant locale. Enfin, l’impact de la mouillabilité sur les figures de condensation est étudié. Cette dernière étude est vue comme un premier pas vers l’étude des mécanismes de dégradation dans le régime de condensation. / This thesis is a contribution to the study water transfers within PEM fuel cell, a key element of this technology. A numerical simulation tool is developed coupling a pore network model in the gas diffusion layer (DM), a mixed continuum – pore network approach in the microporous layer (MPL) and a model by compartments in the catalyst layer. The developed approach takes into account the coupled heat and water transfers through the modeling of phase change phenomena (evaporation – condensation) in the DM and in the MPL. In the first part, we study the case where water migrates into the MPL-DM assembly directly in liquid phase. The impact of gas pressure variation on liquid phase distribution is studied. The optimal thickness of MPL is studied too. In the second part we study situations where liquid water essentially formed by condensation in the diffusion layer. We first study the impact of DM and MPL properties on the condensation diagram. Then we analyze the impact of liquid water formation on the local current density distribution. Finally the impact of wettability modifications on the liquid water patterns is studied. This last study is considered as a first step toward the study of degradation mechanisms in the condensation regime.
15

Dinâmica do acoplamento de dois osciladores caóticos de Rössler / Dynamic of the coupling between two chaotic Rössler oscillators

Prants, Willian Tiago 26 July 2012 (has links)
Made available in DSpace on 2016-12-12T20:15:49Z (GMT). No. of bitstreams: 1 Willians Prants.pdf: 18721085 bytes, checksum: 3872eb4cc3f6155fd37e124cf75d4e35 (MD5) Previous issue date: 2012-07-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we analyze the dynamics of two continuous time models: (i) the Rössler model, a model for the Lorenz system, composed by a set of three differential equations of first order, autonomous, and has only one nonlinearity and (ii) the model of two coupled chaotic Rössler oscillators, built by the linear coupling between two Rössler systems and controlled by two coupling parameters Є e θ, which correspond to intensity and symmetry of the coupling. For the first model, we find analytically the equilibrium points and analyzed by the method of Routh-Hurwitz, their stability. We construct numerically the parameters space a × b, a × c and c × b identifying the regions of chaotic regime and detect typical periodic structures immersed in these regions. For the second model, we construct numerically the parameter space for the coupling parameters Є e θ, and we find a periodic region immersed in chaos characterizing the effect of suppression of chaos. By analyzing the second largest Lyapunov exponent we detect a hiperchaotic region. For both models we use bifurcation diagrams to analyze the periodic structures and to determine the routes to chaos / Neste trabalho analisamos a dinâmica de dois modelos a tempo contínuo: (i) o modelo de Rössler, um modelo para o sistema de Lorenz, composto pelo conjunto de três equações diferenciais, de primeira ordem, autônomo e que apresenta apenas uma não-linearidade e (ii) o modelo de dois osciladores caóticos de Rössler acoplados, construído pelo acoplamento linear entre dois sistemas de Rössler e controlado por dois parâmetros de acoplamento Є e θ, que correspondem a intensidade e simetria de acoplamento. Para o primeiro modelo, encontramos analiticamente os pontos de equilíbrio e analisamos, através do método de Routh-Hurwitz, suas estabilidades. Construímos numericamente os espaços de parâmetros a × b, a × c e c × b identificando as regiões de regime caótico e detectamos estruturas periódicas típicas imersas nessas regiões. Para o segundo modelo, construímos numericamente o espaço de parâmetros para os parâmetros de acoplamento Є e θ, e encontramos uma região periódica imersa em caos, caracterizando o efeito de supressão de caos. Analisando o segundo maior expoente de Lyapunov detectamos uma larga região hipercaótica. Para ambos os modelos usamos diagramas de bifurcação para analisar as estruturas periódicas e determinar as rotas para o caos.
16

Statistical Models for Characterizing and Reducing Uncertainty in Seasonal Rainfall Pattern Forecasts to Inform Decision Making

AlMutairi, Bandar Saud 01 July 2017 (has links)
Uncertainty in rainfall forecasts affects the level of quality and assurance for decisions made to manage water resource-based systems. However, eliminating uncertainty in a complete manner could be difficult, decision-makers thus are challenged to make decisions in the light of uncertainty. This study provides statistical models as an approach to cope with uncertainty, including: a) a statistical method relying on a Gaussian mixture (GM) model to assist in better characterize uncertainty in climate model projections and evaluate their performance in matching observations; b) a stochastic model that incorporates the El Niño–Southern Oscillation (ENSO) cycle to narrow uncertainty in seasonal rainfall forecasts; and c) a statistical approach to determine to what extent drought events forecasted using ENSO information could be utilized in the water resources decision-making process. This study also investigates the relationship between calibration and lead time on the ability to narrow the interannual uncertainty of forecasts and the associated usefulness for decision making. These objectives are demonstrated for the northwest region of Costa Rica as a case study of a developing country in Central America. This region of Costa Rica is under an increasing risk of future water shortages due to climate change, increased demand, and high variability in the bimodal cycle of seasonal rainfall. First, the GM model is shown to be a suitable approach to compare and characterize long-term projections of climate models. The GM representation of seasonal cycles is then employed to construct detailed comparison tests for climate models with respect to observed rainfall data. Three verification metrics demonstrate that an acceptable degree of predictability can be obtained by incorporating ENSO information in reducing error and interannual variability in the forecast of seasonal rainfall. The predictability of multicategory rainfall forecasts in the late portion of the wet season surpasses that in the early portion of the wet season. Later, the value of drought forecast information for coping with uncertainty in making decisions on water management is determined by quantifying the reduction in expected losses relative to a perfect forecast. Both the discrimination ability and the relative economic value of drought-event forecasts are improved by the proposed forecast method, especially after calibration. Positive relative economic value is found only for a range of scenarios of the cost-loss ratio, which indicates that the proposed forecast could be used for specific cases. Otherwise, taking actions (no-actions) is preferred as the cost-loss ratio approaches zero (one). Overall, the approach of incorporating ENSO information into seasonal rainfall forecasts would provide useful value to the decision-making process - in particular at lead times of one year ahead.
17

Temporal Persistence and Spatial Coherence of Tropical Rainfall

Ratan, Ram January 2016 (has links) (PDF)
The work presented in the thesis focuses on systematically documenting the multi scale nature of the temporal persistence and spatial coherence of tropical rainfall. There are three parts to the thesis: The first two parts utilize satellite-retrieved rainfall at multiple observational resolutions to characterize the space-time organization of rain; the third part assesses the ability of state-of-the-art coupled models to reproduce some of the observed features. In the first part of the study, which focuses on the temporal persistence of rain, we analyze the Tropical Rainfall Measurement Mission (TRMM) satellite-based observations to compare and contrast wet and dry spell characteristics over the tropics (30 S-30 N). Defining a wet (dry) spell as the number of consecutive rainy (nonrainy) days, we find that the distributions of wet spells (independent of spatial resolution) exhibit universality in the following sense. While both ocean and land regions with high seasonal rainfall accumulation (humid regions) show a predominance of 2-4 day wet spells, those regions with low seasonal rainfall accumulation (arid regions) exhibit a wet spell duration distribution that is essentially exponential in nature, with a peak at 1 day. The behaviour that we observed for wet spells is reversed for dry spell distributions. The total rainfall accumulated in each wet spell has also been analyzed, and we find that the major contribution to seasonal rainfall for arid regions comes from very short length wet spells; however, for humid regions, this contribution comes from wet spells of duration as long as 30 days. An exhaustive sensitivity study of factors that can potentially affect the wet and dry spell characteristics (e.g., resolution) shows that our findings are robust. We also explore the role of chance in determining the 2-4 day mode, as well as the inuence of organized convection in separating reality from chance. The second part deals with the spatial coherence of tropical rain. We take two different approaches, namely, a global and local view. The global view attempts to quantify the con-ventional view of rain, i.e., the dominance of the intertropical convergence zone (ITCZ), while the local view tries to answer the question: if it rains, how far is the influence felt in zonal and meridional directions? In both approaches, the classical e-folding length for spatial decorrelation is used as a measure of spatial coherence. The major finding in the global view approach is that, at short timescales of accumulation (daily to pentad to even monthly), rain over the Equator shows the most dominant zonal scale. It is only at larger timescales of accumulation (seasonal or annual) that the dominance of ITCZ around 7 N is evident. In addition, we also find a semi-log linearity between the spatial scales, seen from afar, and timescale of accumulation, with a break in linearity around typical synoptic timescales of 5-10 days. The local view quantifies the dominance of the zonal scale in the tropical ocean convergence zones, with an anisotropy value (ratio of zonal to meridional scales) of 3-4. Over land, on the other hand, the zonal and meridional scales are comparable in magnitude, suggesting that rain tends to be mostly isotropic over continental regions. This latter finding holds true, irrespective of the spatial and temporal resolutions at which rain is observed. Interestingly, the anisotropy over ocean, while invariant with spatial resolution, is found to be a function of temporal resolution: from a value of 3-4 at daily timescale, it decreases to around 1.5 at 3-hourly resolution, suggesting that perhaps rain fundamentally might be isotropic in nature at an event scale. The final part analyses a few models from the suite of Coupled Model Intercomparison Project (CMIP5) models, to evaluate their ability to reproduce some of these aforementioned features. For all the strong biases that models are known to have, some of the observed features are captured well by the models. Specifically, on the temporal persistence front, the observed 2-4 day mode of wet (dry) spells of rain over humid (arid) regions is also seen in models. The overestimation of longer duration wet spells appears to be the primary cause of a positive bias in the number of rainy days from the models. In general, the tendency of models to not stop raining results in lower and higher number of shorter and longer duration wet spells, respectively, and consequently an overall reduction in dry spells of all durations. On the spatial coherence front, the main finding from the global view approach is that the observed semi-log linearity of the zonal spatial scale of rainfall as a function of timescale of accumulation is strikingly well-reproduced by the models. Even more remarkable is that the models are able to mimic the break in this linearity around 5 days (typical synoptic scale). What the models fail to do prominently is the transition of the dominance of equatorial rain at smaller timescales of accumulation to the dominance of ITCZ at around 7 N at higher timescales of accumulation. Based on the local view approach, we find that, in general, even though the zonal and meridional scales are overestimated, the observed isotropy of continental rain is captured very well by the models. Over the oceans, the success is less prominent, especially with the core of the ITCZ showing much larger ratios than those observed. Thus, the models seem to be able to reproduce the anisotropy for the wrong reasons, and the proposed anisotropy ratio could be a useful metric in further diagnosis of climate models.
18

Vázané modelování asynchronního motoru metodou fyzikálního modelování / Constrained modeling of induction motor using physical modeling

Toman, Marek January 2015 (has links)
This paper deals with interaction of different physical phenomena in asynchronous motor. The first part of this work is devoted to computing of electrical ratios in asynchronous motor. By using the equivalent circuit in the shape of Gamma-circuit the equation for computing of currents, performances and losses of asynchronous motor are derived. The second part describes calculating of electromagnetic circuit and iron-core losses. In the next part there is the first part of associated model created which respects electric and electromagnetic ratios in the asynchronous motor. This model can be used for example to pursuance of variation of flux density caused by resizing load. In this model the unconventional way of computing the magnetizating inductance and resistance coresponding to iron-core losses is used. The next part deals with calculation of machine warming using the thermal network. In the last part there is a complete coupled model assembed which respects the interaction of electrical, electromagnetical and thermal ratios of induction machine.
19

Climate Change Effects on Rainfall Intensity-Duration-Frequency (IDF) Curves for the Town of Willoughby (HUC-12) Watershed Using Various Climate Models

Mainali, Samir 18 July 2023 (has links)
No description available.
20

A Multi-Scale Finite Element Model of the Cardiac Ventricles

Deserranno, Dimitri 30 May 2006 (has links)
No description available.

Page generated in 0.0333 seconds