• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 208
  • 45
  • 37
  • 20
  • 15
  • 12
  • 9
  • 7
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 762
  • 197
  • 87
  • 77
  • 68
  • 67
  • 61
  • 60
  • 56
  • 53
  • 50
  • 49
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade with High Freestream Turbulence: Experimental and CFD Studies

Xue, Song 23 August 2012 (has links)
The contribution of present research work is to experimentally investigate the effects of blowing ratio and mainstream Mach number/Reynolds number (from 0.6/8.5X10⁵ to 1.0/1.4X10⁶) on the performance of the fan-shaped hole injected turbine blade and vane. The study was operated with high freestream turbulence intensity (12% at the inlet) and large turbulence length scales (0.26 for blade, 0.28 for vane, normalized by the cascade pitch of 58.4mm and 83.3mm respectively). Both convective heat transfer coefficient, in terms of Nusselt number, and adiabatic effectiveness are provided in the results. Present research work also numerically investigates the shock/film cooling interaction. A detailed analysis on the physics of the shock/film cooling interaction in the blade cascade is provided. The results of present research suggests the following major conclusions. Compared to the showerhead only vane, the addition of fan-shaped hole injection on the turbine Nozzle Guide Vane (NGV) increases the Net Heat Flux Reduction (NHFR) 2.6 times while consuming 1.6 times more coolant. For the blade, combined with the surface curvature effect, the increase of Mach number/Reynolds number results in an improved film cooling effectiveness on the blade suction side, but a compromised cooling performance on the blade pressure side. A quick drop of cooling effectiveness occurs at the shock impingement on the blade suction side near the trailing edge. The CFD results indicate that this adiabatic effectiveness drop was caused by the strong secondary flow after shock impingement, which lifts coolant away from the SS surface, and increases the mixing. This secondary flow is related to the spanwise non-uniform of the shock impingement. / Ph. D.
382

Controlling Microbial Colonization and Biofilm Formation Using Topographical Cues

Kargar, Mehdi 13 January 2015 (has links)
This dissertation introduces assembly of spherical particles as a novel topography-based anti-biofouling coating. It also provides new insights on the effects of surface topography, especially local curvature, on cell–surface and cell–cell interactions during the evolution of biofilms. I investigated the adhesion, colonization, and biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa on a solid coated in close-packed spheres of polystyrene, using flat polystyrene sheets as a control. The results show that, whereas flat sheets are covered in large clusters after one day, a close-packed layer of 630–1550 nm monodisperse spheres prevents cluster formation. Moreover, the film of spheres reduces the density of P. aeruginosa adhered to the solid by 80%. Our data show that when P. aeruginosa adheres to the spheres, the distribution is not random. For 630 nm and larger particles, P. aeruginosa tends to position its body in the confined spaces between particles. After two days, 3D biofilm structures cover much of the flat polystyrene, whereas 3D biofilms rarely occur on a solid with a colloidal crystal coating of 1550 nm spheres. On 450 nm colloidal crystals, the bacterial growth was intermediate between the flat and 1550 nm spheres. The initial preference for P. aeruginosa to adhere to confined spaces is maintained on the second day, even when the cells form clusters: the cells remain in the confined spaces to form non-touching clusters. When the cells do touch, the contact is usually the pole, not the sides of the bacteria. The observations are rationalized based on the potential gains and costs associated with cell-sphere and cell-cell contacts. I concluded that the anti-biofilm property of the colloidal crystals is correlated with the ability to arrange the individual cells. I showed that a colloidal crystal coating delays P. aeruginosa cluster formation on a medical-grade stainless-steel needle. This suggests that a colloidal crystal approach to biofilm inhibition might be applicable to other materials and geometries. The results presented in appendix 1 suggest that colloidal crystals can also delay adhesion of Methicillin resistant staphylococcus aureus (MRSA) while it supports selective adhesion of this bacterium to the confined spaces. / Ph. D.
383

Method of numerical simulation of stable structures of fluid membranes and vesicles.

Ugail, Hassan, Jamil, N., Satinoianu, R. January 2006 (has links)
In this paper we study a methodology for the numerical simulation of stable structures of fluid membranes and vesicles in biological organisms. In particular, we discuss the effects of spontaneous curvature on vesicle cell membranes under the bending energy for given volume and surface area. The geometric modeling of the vesicle shapes are undertaken by means of surfaces generated as Partial Differential Equations (PDEs). We combine PDE based geometric modeling with numerical optimization in order to study the stable shapes adopted by the vesicle membranes. Thus, through the PDE method we generate a generic template of a vesicle membrane which is then efficiently parameterized. The parameterization is taken as a basis to set up a numerical optimization procedure which enables us to predict a series of vesicle shapes subject to given surface area and volume.
384

Feedback Control for a Path Following Robotic Car

Mellodge, Patricia 02 May 2002 (has links)
This thesis describes the current state of development of the Flexible Low-cost Automated Scaled Highway (FLASH) laboratory at the Virginia Tech Transportation Institute (VTTI). The FLASH lab and the scale model cars contained therein provide a testbed for the small scale development stage of intelligent transportation systems (ITS). In addition, the FLASH lab serves as a home to the prototype display being developed for an educational museum exhibit. This thesis also gives details of the path following lateral controller implemented on the FLASH car. The controller was developed using the kinematic model for a wheeled robot. The global model is converted into the path coordinate model so that only local variables are needed. then the path coordinate model is converted into chained form and a controller is given to perform path following. The path coordinate model introduces a new parameter to the system: the curvature of the path. Thus, it is necessary to provide the path's curvature value to the controller. Because of the environment in which the car is operating, the curvature values are known a priori. Several online methods for determining the curvature are developed. A MATLAB simulation environment was created with which to test the above algorithms. The simulation uses the kinematic model to show the car's behavior and implements the sensors and controller as closely as possible to the actual system. The implementation of the lateral controller in hardware is discussed. The vehicle platform is described and the harware and software architecture detailed. The car described is capable of operating manually and autonomously. In autonomous mode, several sensors are utilized including: infrared, magnetic, ultrasound, and image based technology. The operation of each sensor type is described and the information received by the processor from each is discussed. / Master of Science
385

Investigating Moisture Gradient-Induced Warpage of Veneers

Strong, Kerrigan Ann 02 September 2021 (has links)
Flatness of wood composite panels, such as Laminated Veneer Lumber, is often difficult to control during the manufacturing process. Out-of-plane deformation, or warpage, of wood veneers caused by changes in moisture content affects the ability to press flat panels. To understand wood panel warpage, experimental methods are developed to create and measure moisture-induced deformation of wood veneers on five species of various thicknesses. Three moisture induction methods are investigated and evaluated to determine the increase in moisture content. Experiments are developed to produce moisture gradients of two concentrations in the veneers to examine the effect on warpage behavior. Additionally, the surface area of applied moisture and veneer thickness is also investigated. Three-dimensional scanning technology is used to measure warpage of veneers. A procedure using a structured-light scanner is developed to analyze the surface curvatures to observe the effect of moisture-induced warpage. After moisture-induction treatment of the veneer, surface deformation data is measured using the scanner and the data is converted into a 3D solid body model that is used for curvature comb analysis. The results show that curvature comb analysis can be used to analyze the geometry of moisture-induce warpage. The method can be used to analyze the effect of moisture gradient variables on warpage behavior including concentration, veneer thickness, and surface area. The experimental methods developed can be used by future researchers to validate theoretical warpage prediction models. / Master of Science / Flatness of wood composite panels, such as Laminated Veneer Lumber, is often difficult to control during the manufacturing process. Warpage of wood veneers is caused by changes in moisture content affecting manufacturers' ability to press flat panels. To understand wood panel warpage, experimental methods are developed to create and measure moisture-induced warpage of wood veneers on five species of various thicknesses. Three moisture induction methods are investigated and evaluated to determine the increase in moisture content. Experiments are developed to produce moisture gradients of two concentrations in the veneers to examine the effect on warpage behavior. Additionally, the surface area of applied moisture and veneer thickness is also investigated. Three-dimensional scanning technology is used to measure warpage of veneers. A procedure is developed to analyze the surface curvatures to observe the effect of moisture-induced warpage. After moisture-induction treatment of the veneer, surface deformation data is measured and converted into a 3D solid body model that is used to analyze curvature. The results show that moisture induction methods used to induce warpage can experience different geometries to analyze a veneer's curvature. The methods can be used to analyze warpage behavior of veneers by future researchers to validate warpage prediction model.
386

The Effects of Curving Large, High-Resolution Displays on User Performance

Shupp, Lauren Marcy 29 September 2006 (has links)
Tiling multiple monitors to increase the amount of screen space has become an area of great interest to researchers. While previous research has shown user performance benefits when tiling multiple monitors, little research has analyzed whether much larger high-resolution displays result in better user performance. The work in this paper evaluates user performance on an even larger, twenty-four monitor, high-resolution (96 DPI), high pixel-count (approximately 32 million pixels) display for single-users in both flat and curved forms. The first experiment compares user performance time, accuracy, and mental workload on multi-scale geospatial search, route tracing, and comparison tasks across one, twelve (4x3), and twenty-four (8x3) tiled monitor configurations. Using the same tasks, we evaluated conditions that uniformly curve the twelve and twenty-four monitor displays. Results show that, depending on the task, larger viewport sizes improve performance time with less user frustration. Findings also reveal that curving large displays improves performance time as users interacted with less strenuous physical navigation on the curved conditions. A second study sought to understand why curving the display, effectively bringing all pixels into visible range, improved performance so as to provide guidelines for using such large displays. The study tested for region biases, performance gaps in comparing virtually distant objects, and degree of detail of user insights while measuring the physical navigation required. Results clearly show that significantly less movement is required when physically navigating the curved display. Performance measures reveal that users favor the left regions of the flat display, while there appears to be no region bias on the curved display. Furthermore, user performance time increased as the virtual distance between objects increased, and there is a tradeoff in insight detail between the two forms. In conclusion, larger, high-resolution displays improve user performance, and curving such displays further improves performance, removing any biases towards regions of the display, potentially reducing the performance drop of virtually far apart objects, reducing the amount of physical navigation necessary, and enabling more detailed insights. Based on these findings, one should always curve multiple monitor displays for single users, and if space is an issue, start curving once the display reaches four or five monitors wide. / Master of Science
387

Geometric approach to multi-scale 3D gesture comparison

Ochoa Mayorga, Victor Manuel 11 1900 (has links)
The present dissertation develops an invariant framework for 3D gesture comparison studies. 3D gesture comparison without Lagrangian models is challenging not only because of the lack of prediction provided by physics, but also because of a dual geometry representation, spatial dimensionality and non-linearity associated to 3D-kinematics. In 3D spaces, it is difficult to compare curves without an alignment operator since it is likely that discrete curves are not synchronized and do not share a common point in space. One has to assume that each and every single trajectory in the space is unique. The common answer is to assert the similitude between two or more trajectories as estimating an average distance error from the aligned curves, provided that the alignment operator is found. In order to avoid the alignment problem, the method uses differential geometry for position and orientation curves. Differential geometry not only reduces the spatial dimensionality but also achieves view invariance. However, the nonlinear signatures may be unbounded or singular. Yet, it is shown that pattern recognition between intrinsic signatures using correlations is robust for position and orientation alike. A new mapping for orientation sequences is introduced in order to treat quaternion and Euclidean intrinsic signatures alike. The new mapping projects a 4D-hyper-sphere for orientations onto a 3D-Euclidean volume. The projection uses the quaternion invariant distance to map rotation sequences into 3D-Euclidean curves. However, quaternion spaces are sectional discrete spaces. The significance is that continuous rotation functions can be only approximated for small angles. Rotation sequences with large angle variations can only be interpolated in discrete sections. The current dissertation introduces two multi-scale approaches that improve numerical stability and bound the signal energy content of the intrinsic signatures. The first is a multilevel least squares curve fitting method similar to Haar wavelet. The second is a geodesic distance anisotropic kernel filter. The methodology testing is carried out on 3D-gestures for obstetrics training. The study quantitatively assess the process of skill acquisition and transfer of manipulating obstetric forceps gestures. The results show that the multi-scale correlations with intrinsic signatures track and evaluate gesture differences between experts and trainees.
388

Geometric approach to multi-scale 3D gesture comparison

Ochoa Mayorga, Victor Manuel Unknown Date
No description available.
389

The differential geometry of the fibres of an almost contract metric submersion

Tshikunguila, Tshikuna-Matamba 10 1900 (has links)
Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types are studied. Submersions of type I are those whose base space is an almost contact metric manifold while, when the base space is an almost Hermitian manifold, then the submersion is said to be of type II. After recalling the known notions and fundamental properties to be used in the sequel, relationships between the structure of the fibres with that of the total space are established. When the fibres are almost Hermitian manifolds, which occur in the case of a type I submersions, we determine the classes of submersions whose fibres are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal (almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of submersions of type I based upon the structure of the fibres. Concerning the fibres of a type II submersions, which are almost contact metric manifolds, we discuss how they inherit the structure of the total space. Considering the curvature property on the total space, we determine its corresponding on the fibres in the case of a type I submersions. For instance, the cosymplectic curvature property on the total space corresponds to the Kähler identity on the fibres. Similar results are obtained for Sasakian and Kenmotsu curvature properties. After producing the classes of submersions with minimal, superminimal or umbilical fibres, their impacts on the total or the base space are established. The minimality of the fibres facilitates the transference of the structure from the total to the base space. Similarly, the superminimality of the fibres facilitates the transference of the structure from the base to the total space. Also, it is shown to be a way to study the integrability of the horizontal distribution. Totally contact umbilicity of the fibres leads to the asymptotic directions on the total space. Submersions of contact CR-submanifolds of quasi-K-cosymplectic and quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration submersions induce the CR-product on the total space. / Mathematical Sciences / D. Phil. (Mathematics)
390

Tamanho ideal de parcelas para avaliação da intensidade de infestação por broca da cana-de-açúcar /

Suzuki, Aline Namie. January 2018 (has links)
Orientador: Glaucia Amorim Faria / Resumo: Considerando que a intensidade de infestação (I.I.%) é um importante dado sobre o dano causado pela Diatraea saccharalis em cana-de-açúcar e que existem poucos trabalhos na literatura relacionados ao tamanho de ótimo de parcela para este tipo de amostragem, o objetivo deste trabalho foi estimar o tamanho ótimo de parcela em hectares e número de colmos que deverá ser utilizado no processo de amostragem de modo que represente a intensidade de infestação causada pelo ataque da D. saccharalis em cana-de-açúcar. Para os cálculos relativos ao tamanho da área a ser amostrada foram utilizados quatro métodos para o cálculo do tamanho de parcela: método de inspeção visual da curvatura máxima, método da máxima curvatura modificado, modelo linear segmentado com platô e modelo quadrático segmentado com platô. Para os cálculos referentes ao número de entrenós foi utilizado o método da estimativa da suficiência amostral. O método da máxima curvatura modificado foi o que proporcionou melhores resultados. De acordo com os resultados encontrados neste trabalho, podemos concluir que o número mínimo a ser amostrado é o de 36 entrenós por hectare e a área máxima a ser amostrada é a de 27,5 hectares. / Abstract: Infestation intensity (II%) is an important data on the damage caused by Diatraea saccharalis in sugarcane. There are few studies in the literature related to the optimal plot size for this type of sampling. The objective of this work is to estimate the optimal plot size in hectares and number of stems to be used in the sampling process to represent the intensity of infestation caused by D. saccharalis attack on sugarcane. For the calculation of the size of the minimum sampled area, four methods were used: 1. visual inspection method of maximum curvature; 2. modified maximum curvature method; 3. segmented linear model with plateau and; 4. quadratic segmented model with plateau. For the calculations referring to the number of internodes, the method of estimating the sample adequacy was used. The modified maximum curvature method presented the best results. According this study, the minimum number to be sampled is 36 trains per hectare and the maximum area to be sampled is 27.5 hectares. / Mestre

Page generated in 0.0894 seconds