• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 18
  • 10
  • 6
  • 6
  • 2
  • 1
  • Tagged with
  • 141
  • 141
  • 64
  • 53
  • 52
  • 46
  • 24
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Application of Lamb waves using piezoelectric technique for structure health monitoring / Tillämpning av Lambvågor med hjälp av piezoelektrisk teknik för strukturhälsoövervakning

Mauritz, Simon January 2023 (has links)
Structural health monitoring (SHM) is damage detection strategy for aerospace, civiland mechanical infrastructure. This project tries to show that Lamb waves, that are being generated and sensed with piezoelectric transducers, can be used for damage detection in a SHM system. For these piezoelectric transducers to work, filtering and amplification circuits needs to be connected to them. This report include the design,simulation, assembly and testing of these circuits. Due to lack of time, it was not possible to generate and sense actual Lamb waves. The result of the thesis is thatsimulations and tests show that it is possible to generate and sense Lamb waves for damage detection in a SHM system / Structural health monitoring (SHM) är en skadedetekteringsstrategi för flyg-,civil- och mekanisk infrastruktur. Detta projekt försöker visa att Lambvågor, som genereras och avkänns med piezoelektriska givare, kan användas för skadedetektering i ett SHM-system. För att dessa piezoelektriska givare ska fungera krävs att filtrerings- och förstärkningskretsar är anslutna till dem. Denna rapport inkluderar design, simulering, montering och testning av dessa kretsar. På grund av tidsbrist var det inte möjligt att generera eller avkänna Lambvågor. Resultatet av examensarbetet är att simuleringar och tester visar att det är möjligt att generera och avkänna Lambvågor för skadedetektering i ett SHM-system.
132

[pt] AVALIAÇÃO DE ÍNDICES MODAIS PARA IDENTIFICAÇÃO DE DANOS EM PASSARELAS METÁLICAS / [en] EVALUATION OF MODAL INDICES FOR DAMAGE IDENTIFICATION ON STEEL FOOTBRIDGES

AUGUSTO CESAR MIRANDA FEIJAO 27 June 2023 (has links)
[pt] Dentre as diversas metodologias de detecção de danos, destacam-se os métodos de identificação de danos baseados na resposta da vibração (Vibration-based damage identification - VBDI), uma vez que a deterioração presente em elementos estruturais influencia diretamente na resposta dinâmica global e local da estrutura ocasionando alterações nos parâmetros dinâmicos. As diferentes abordagens encontradas na revisão de literatura para detecção dinâmica de danos focam principalmente em estruturas unidimensionais ou retas, que, por sua vez, podem não representar o comportamento dinâmico real de estruturas arrojadas como pontes e passarelas com geometria diferenciada. Alguns índices modais, nomeadamente curvatura modal, flexibilidade modal e energia de deformação modal, foram avaliados para uma passarela de aço com geometria curva. Para isso utilizou-se um modelo de elementos finitos da mesma, de onde foram extraídos os modos de vibração tridimensionais. Além disso, um índice recentemente proposto, denominado vetor resultante, que incorpora coordenadas modais tridimensionais, também é avaliado e comparado aos índices mencionados anteriormente. Os resultados mostram que a precisão dos índices na localização de danos está correlacionada com a região da estrutura onde o dano se encontra. Conclui-se então que para detecção de dano em uma estrutura real, é necessário que se utilize mais de um índice de dano. O impacto da magnitude do dano na acurácia dos índices é também estudado. A influência do dano nas vigas adjacentes e como isso se reflete nos índices também é investigada, a fim de evitar ambiguidade na localização de danos, e para direcionar corretamente programas de inspeção e monitoramento da integridade estrutural. / [en] Among the various damage detection methodologies, the Vibration-based damage identification (VBDI) methods stand out, since the deterioration present in structural elements directly influences the global and local dynamic response of the structure, causing changes in the dynamic parameters. The different approaches found in the literature review for dynamic damage detection focus mainly on one-dimensional or straight structures, which in turn may not represent the actual dynamic behavior of bold structures such as bridges and footbridges with different geometry. Some modal indices, namely modal curvature, modal flexibility, and modal strain energy were evaluated for a steel footbridge with curved geometry. For this purpose, a finite element model of it was used, from which the three-dimensional mode shapes were extracted. In addition, a recently proposed index, called resultant vector, which incorporates three-dimensional modal coordinates, is also evaluated and compared to the aforementioned ones. The results show that the accuracy of the indices for damage localization is correlated with the region of the structure where the damage is located. It is then concluded that for damage detection in a real structure, it is necessary to use more than one damage index. The impact of the damage magnitude on the accuracy of the indices is also studied. The influence of damage in adjacent beams and how this is reflected in the indices is also investigated in order to avoid ambiguity in damage location, and to correctly direct inspections and structural integrity monitoring programs.
133

[pt] IDENTIFICAÇÃO MODAL DE DANOS EM PASSARELAS METÁLICAS COM USO DE REDES NEURAIS ARTIFICIAIS / [en] MODAL IDENTIFICATION OF DAMAGE IN STEEL FOOTBRIDGES USING ARTIFICIAL NEURAL NETWORK

VITOR ABRAHAO GONCALVES 22 March 2022 (has links)
[pt] As estruturas civis durante toda a sua vida útil estão sujeitas a diversas ações de deterioração, desgastes ou corrosão de seus membros, que podem gerar variações em suas características físicas. Estas ações podem causar danos ao seu funcionamento, podendo chegar até ao colapso, em casos mais extremos. Além disso, o avanço tecnológico que permite a concepção de estruturas cada vez mais esbeltas, e que geram assim possíveis vibrações excessivas, elevam o monitoramento estrutural a um patamar de extrema importância e atenção na ótica dos gestores desses sistemas. Particularmente, no caso de obras de infraestrutura como pontes e passarelas, as grandes dimensões são características significativas que tornam as práticas de monitoramento e inspeção mais difíceis. Dessa forma, com o objetivo auxiliar no monitoramento estrutural e direcionar inspeções visuais, diversos métodos de identificação de danos são estudados com base nas características dinâmicas das estruturas, como as frequências naturais e os modos de vibração. A revisão de literatura, porém, demonstra que há uma dificuldade na aplicação desta identificação em estruturas mais complexas de grande porte. Assim, este trabalho visa estudar esta dificuldade e propor uma solução baseada na construção de um índice, composto pelos modos de vibração. Além disso, através da aplicação de algoritmos de aprendizado de máquina e de reconhecimento de padrões, como as Redes Neurais Artificiais (RNAs), propõese aumentar a eficiência do processo de localização espacial e quantificação dos danos. Em seguida, a metodologia proposta é, então, aplicada em um modelo de passarela metálica inspirado em uma estrutura real presente na região do Terminal Centro Olímpico da cidade do Rio de Janeiro – RJ. A identificação de danos é estudada através da aplicação do índice proposto, incorporando as redes neurais e avaliando do impacto da variação dos parâmetros da RNA na eficiência global da detecção. / [en] Civil structures are subjected to different deterioration and corrosion actions throughout their entire service life, which can generate variations in their physical characteristics. These actions can cause damage to its functioning, and possibly leading to collapse in more severe cases. In addition, technology development which allows the design of increasingly slender structures, can produce excessive vibrations, which elevates the importance ofstructural monitoring to a higher level from the perspective of infrastructure managers. Particularly, in the case of bridges and walkaways, due to their large dimensions make monitoring and inspection even more difficult. Thus, with the aim of providing methods to assist in structural monitoring and facilitate visual inspections, several damage identification methods are investigated, which are based on structures dynamic characteristics, such as natural frequencies and mode shapes. The conducted literature review revealed that there is a difficulty in applying these identification methods in large-scale and complex structures. Thus, this research aims to study these barriers and propose a solution based on the development of a new damage index based on the structure s mode shapes. Furthermore, through the application of machine learning algorithms and pattern recognition, such as Artificial Neural Networks (ANN), it is proposed to increase the efficiency of the damage identification and quantification process. Then, the proposed methodology is tested numerically on a steel footbridge model inspired by a real structure located in the region of the Olympic Center Terminal, in the city of Rio de Janeiro – RJ. The damage identification method is studied through the application of the proposed damage index, incorporating the neural network and assessing the impact of ANNs parameters variation in the global efficiency of the damage detection method.
134

Characterization of the Frictional-Shear Damage Properties of Scaffold-Free Engineered Cartilage and Reduction of Damage Susceptibility by Upregulation of Collagen Content

Whitney, G. Adam 09 February 2015 (has links)
No description available.
135

Využití jednoduchého elektrochemického DNA biosenzoru při stanovení environmentálních polutantů a vyšetřování jejich interakce s DNA / The Use of a Simple Electrochemical DNA Biosensor for the Determination of Environmental Pollutants and Investigation of Their Interaction with DNA

Blašková, Marta January 2014 (has links)
The interaction between three selected representatives of environmental pollutants - naphthalene, anthracene, and 2-aminoanthracene - and DNA was investigated using an electrochemical DNA biosensor based on a glassy carbon electrode (GCE) and low molecular weight DNA from salmon sperm (DNA/GCE). The interactions with DNA were monitored using square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS). For naphthalene, there was no DNA damaging interaction observed. In the case of anthracene, the formation of an intercalation complex [DNA-anthracene] was observed. However, its formation does not cause DNA strand breaks. The formation of similar intercalation complex was observed for 2-aminoanthracene [DNA-2-aminoanthracene], where we suppose on the basis of the results obtained that the intercalation of 2-aminoanthracene into the DNA double helix induces a tension and subsequent formation of single-strand breaks, which cause that the fragments of DNA fall away from the electrode surface. The intercalative interaction of DNA with anthracene a 2-aminoanthracene was used in the development of electrochemical methods for determination of these compounds at the GCE and DNA/GCE. At the development of the methods, DC voltammetry (DCV) and differential pulse voltammetry (DPV) were used....
136

Detekce oxidačního stresu pomocí elektrochemických DNA biosenzorů / Detection of Oxidative Stress Using Electrochemical DNA Biosensors

Jurečková, Zuzana January 2015 (has links)
Presented Diploma Thesis is focused on the development, characterization, and utilization of simple and inexpensive electrochemical DNA biosensor for the detection of DNA damage caused by oxidative stress. The initial part of the work is devoted to preparation and characterization of a large-surface carbon film electrode (ls-CFE) modified with carbon nanotubes (CNT/ls-CFE). Carbon nanotubes improve electrochemical properties of the transducer and increase the amount of adsorbed DNA on the electrode surface. Testing of the electrode surface modified with multiwalled carbon nanotubes (MWCNT) was performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using a redox system [Fe(CN)6]4-/3- and using square wave voltammetry without any redox indicator. Carbon nanotubes have proved to be unsuitable material for our type of biosensor, but it can be used inanalytical chemistry for the determination of electroactive substances. The second part of this Thesis deals with the application of the prepared DNA biosensor for the detection of DNA damage by oxidative stress. The biosensor based on the ls-CFE was chosen for this purpose, having several advantages, such as its fast preparation, a simple mechanical renewal of the electrode surface, a good reproducibility of measurements,...
137

Advanced functional and sequential statistical time series methods for damage diagnosis in mechanical structures / Εξελιγμένες συναρτησιακές και επαναληπτικές στατιστικές μέθοδοι χρονοσειρών για την διάγνωση βλαβών σε μηχανολογικές κατασκευές

Κοψαυτόπουλος, Φώτης 01 February 2013 (has links)
The past 30 years have witnessed major developments in vibration based damage detection and identification, also collectively referred to as damage diagnosis. Moreover, the past 10 years have seen a rapid increase in the amount of research related to Structural Health Monitoring (SHM) as quantified by the significant escalation in papers published on this subject. Thus, the increased interest in this engineering field and its associated potential constitute the main motive for this thesis. The goal of the thesis is the development and introduction of novel advanced functional and sequential statistical time series methods for vibration based damage diagnosis and SHM. After the introduction of the first chapter, Chapter II provides an experimental assessment and comparison of vibration based statistical time series methods for Structural Health Monitoring (SHM) via their application on a lightweight aluminum truss structure and a laboratory scale aircraft skeleton structure. A concise overview of the main non-parametric and parametric methods is presented, including response-only and excitation-response schemes. Damage detection and identification are based on univariate (scalar) versions of the methods, while both scalar (univariate) and vector (multivariate) schemes are considered. The methods' effectiveness for both damage detection and identification is assessed via various test cases corresponding to different damage scenarios, multiple experiments and various sensor locations on the considered structures. The results of the chapter confirm the high potential and effectiveness of vibration based statistical time series methods for SHM. Chapter III investigates the identification of stochastic systems under multiple operating conditions via Vector-dependent Functionally Pooled (VFP) models. In many applications a system operates under a variety of operating conditions (for instance operating temperature, humidity, damage location, damage magnitude and so on) which affect its dynamics, with each condition kept constant for a single commission cycle. Typical examples include mechanical structures operating under different environmental conditions, aircrafts under different flight conditions (altitude, velocity etc.), structures under different structural health states (various damage locations and magnitudes). In this way, damage location and magnitude may be considered as parameters that affect the operating conditions and as a result the structural dynamics. This chapter's work is based on the novel Functional Pooling (FP) framework, which has been recently introduced by the Stochastic Mechanical Systems \& Automation (SMSA) group of the Mechanical Engineering and Aeronautics Department of University of Patras. The main characteristic of Functionally Pooled (FP) models is that their model parameters and innovations sequence depend functionally on the operating parameters, and are projected on appropriate functional subspaces spanned by mutually independent basis functions. Thus, the fourth chapter of the thesis addresses the problem of identifying a globally valid and parsimonious stochastic system model based on input-output data records obtained under a sample of operating conditions characterized by more than one parameters. Hence, models that include a vector characterization of the operating condition are postulated. The problem is tackled within the novel FP framework that postulates proper global discrete-time linear time series models of the ARX and ARMAX types, data pooling techniques, and statistical parameter estimation. Corresponding Vector-dependent Functionally Pooled (VFP) ARX and ARMAX models are postulated, and proper estimators of the Least Squares (LS), Maximum Likelihood (ML), and Prediction Error (PE) types are developed. Model structure estimation is achieved via customary criteria (Bayesian Information Criterion) and a novel Genetic Algorithm (GA) based procedure. The strong consistency of the VFP-ARX least squares and maximum likelihood estimators is established, while the effectiveness of the complete estimation and identification method is demonstrated via two Monte Carlo studies. Based on the postulated VFP parametrization a vibration based statistical time series method that is capable of effective damage detection, precise localization, and magnitude estimation within a unified stochastic framework is introduced in Chapter IV. The method constitutes an important generalization of the recently introduced Functional Model Based Method (FMBM) in that it allows, for the first time in the statistical time series methods context, for complete and precise damage localization on continuous structural topologies. More precisely, the proposed method can accurately localize damage anywhere on properly defined continuous topologies on the structure, instead of pre-defined specific locations. Estimator uncertainties are taken into account, and uncertainty ellipsoids are provided for the damage location and magnitude. To achieve its goal, the method is based on the extended class of Vector-dependent Functionally Pooled (VFP) models, which are characterized by parameters that depend on both damage magnitude and location, as well as on proper statistical estimation and decision making schemes. The method is validated and its effectiveness is experimentally assessed via its application to damage detection, precise localization, and magnitude estimation on a prototype GARTEUR-type laboratory scale aircraft skeleton structure. The damage scenarios considered consist of varying size small masses attached to various continuous topologies on the structure. The method is shown to achieve effective damage detection, precise localization, and magnitude estimation based on even a single pair of measured excitation-response signals. Chapter V presents the introduction and experimental assessment of a sequential statistical time series method for vibration based SHM capable of achieving effective, robust and early damage detection, identification and quantification under uncertainties. The method is based on a combination of binary and multihypothesis versions of the statistically optimal Sequential Probability Ratio Test (SPRT), which employs the residual sequences obtained through a stochastic time series model of the healthy structure. In this work the full list of properties and capabilities of the SPRT are for the first time presented and explored in the context of vibration based damage detection, identification and quantification. The method is shown to achieve effective and robust damage detection, identification and quantification based on predetermined statistical hypothesis sampling plans, which are both analytically and experimentally compared and assessed. The method's performance is determined a priori via the use of the analytical expressions of the Operating Characteristic (OC) and Average Sample Number (ASN) functions in combination with baseline data records, while it requires on average a minimum number of samples in order to reach a decision compared to most powerful Fixed Sample Size (FSS) tests. The effectiveness of the proposed method is validated and experimentally assessed via its application on a lightweight aluminum truss structure, while the obtained results for three distinct vibration measurement positions prove the method's ability to operate based even on a single pair of measured excitation-response signals. Finally, Chapter VI contains the concluding remarks and future perspectives of the thesis. / Κατά τη διάρκεια των τελευταίων 30 ετών έχει σημειωθεί σημαντική ανάπτυξη στο πεδίο της ανίχνευσης και αναγνώρισης βλαβών, το οποίο αναφέρεται συνολικά και σαν διάγνωση βλαβών. Επίσης, κατά την τελευταία δεκαετία έχει σημειωθεί σημαντική πρόοδος στον τομέα της παρακολούθησης της υγείας (δομικής ακεραιότητας) κατασκευών. Στόχος αυτής της διατριβής είναι η ανάπτυξη εξελιγμένων συναρτησιακών και επαναληπτικών μεθόδων χρονοσειρών για τη διάγνωση βλαβών και την παρακολούθηση της υγείας κατασκευών υπό ταλάντωση. Αρχικά γίνεται η πειραματική αποτίμηση και κριτική σύγκριση των σημαντικότερων στατιστικών μεθόδων χρονοσειρών επί τη βάσει της εφαρμογής τους σε πρότυπες εργαστηριακές κατασκευές. Εφαρμόζονται μη-παραμετρικές και παραμετρικές μέθοδοι που βασίζονται σε ταλαντωτικά σήματα διέγερσης και απόκρισης των κατασκευών. Στη συνέχεια αναπτύσσονται στοχαστικά συναρτησιακά μοντέλα για την στοχαστική αναγνώριση κατασκευών υπό πολλαπλές συνθήκες λειτουργίας. Τα μοντέλα αυτά χρησιμοποιούνται για την αναπαράσταση κατασκευών σε διάφορες καταστάσεις βλάβης (θέση και μέγεθος βλάβης), ώστε να είναι δυνατή η συνολική μοντελοποίσή τους για όλες τις συνθήκες λειτουργίας. Τα μοντέλα αυτά αποτελούν τη βάση στην οποία αναπτύσσεται μια συναρτησιακή μέθοδος η οποία είναι ικανή να αντιμετωπίσει συνολικά και ενιαία το πρόβλημα της ανίχνευσης, εντοπισμού και εκτίμησης βλαβών σε κατασκευές. Η πειραματική αποτίμηση της μεθόδου γίνεται με πολλαπλά πειράματα σε εργαστηριακό σκελετό αεροσκάφους. Στο τελευταίο κεφάλαιο της διατριβής προτείνεται μια καινοτόμος στατιστική επαναληπτική μέθοδο για την παρακολούθηση της υγείας κατασκευών. Η μέθοδος κρίνεται αποτελεσματική υπό καθεστώς λειτουργικών αβεβαιοτήτων, καθώς χρησιμοποιεί επαναληπτικά και στατιστικά τεστ πολλαπλών υποθέσεων. Η αποτίμηση της μεθόδου γίνεται με πολλαπλά εργαστηριακά πειράματα, ενώ η μέθοδος κρίνεται ικανή να λειτουργήσει με τη χρήση ενός ζεύγους ταλαντωτικών σημάτων διέγερσης-απόκρισης.
138

Identification of multivariate stochastic functional models with applications in damage detection of structures / Αναγνώριση πολυμεταβλητών στοχαστικών συναρτησιακών μοντέλων με εφαρμογή στην διάγνωση βλαβών σε κατασκευές

Χίος, Ιωάννης 01 October 2012 (has links)
This thesis addresses the identification of stochastic systems operating under different conditions, based on data records corresponding to a sample of such operating conditions. This topic is very important, as systems operating under different, though constant conditions at different occasions (time intervals) are often encountered in practice. Typical examples include mechanical, aerospace or civil structures that operate under different environmental conditions (temperature or humidity, for instance) on different occasions (period of day, and so on). Such different operating conditions may affect the system characteristics, and therefore its dynamics. Given a set of data records corresponding to distinct operating conditions, it is most desirable to establish a single global model capable of describing the system throughout the entire range of admissible operating conditions. In the present thesis this problem is treated via a novel stochastic Functional Pooling (FP) identification framework which introduces functional dependencies (in terms of the operating condition) in the postulated model structure. The FP framework offers significant advantages over other methods providing global models by interpolating a set of conventional models (one for each operating condition), as it: (i) treats data records corresponding to different operating conditions simultaneously, and fully takes cross-dependencies into account thus yielding models with optimal statistical accuracy, (ii) uses a highly parsimonious representation which provides precise information about the system dynamics at any specified operating condition without resorting to customary interpolation schemes, (iii) allows for the determination of modeling uncertainty at any specified operating condition via formal interval estimates. To date, all research efforts on the FP framework have concentrated in identifying univariate (single excitation-single response) stochastic models. The present thesis aims at (i) properly formulating and extending the FP framework to the case of multivariate stochastic systems operating under multiple operating conditions, and (ii) introducing an approach based on multivariate FP modeling and statistical hypothesis testing for damage detection under different operating conditions. The case of multivariate modeling is more challenging compared to its univariate counterpart as the couplings between the corresponding signals lead to more complicated model structures, whereas their nontrivial parametrization raises issues on model identifiability. The main focus of this thesis is on models of the Functionally Pooled Vector AutoRegressive with eXogenous excitation (FP-VARX) form, and Vector AutoRegressive Moving Average (FP-VARMA) form. These models may be thought of as generalizations of their conventional VARX/VARMA counterparts with the important distinction being that the model parameters are explicit functions of the operating condition. Initially, the identification of FP-VARX models is addressed. Least Squares (LS) and conditional Maximum Likelihood (ML) type estimators are formulated, and their consistency along with their asymptotic normality is established. Conditions ensuring FP-VARX identifiability are postulated, whereas model structure specification is based upon proper forms of information criteria. The performance characteristics of the identification approach are assessed via Monte Carlo studies, which also demonstrate the effectiveness of the proposed framework and its advantages over conventional identification approaches based on VARX modeling. Subsequently, an experimental study aiming at identifying the temperature effects on the dynamics of a smart composite beam via conventional model and novel global model approaches is presented. The conventional model approaches are based on non-parametric and parametric VARX representations, whereas the global model approaches are based on parametric Constant Coefficient Pooled (CCP) and Functionally Pooled (FP) VARX representations. Although the obtained conventional model and global representations are in rough overall agreement, the latter simultaneously use all available data records and offer improved accuracy and compactness. The CCP-VARX representations provide an ``averaged'' description of the structural dynamics over temperature, whereas their FP-VARX counterparts allow for the explicit, analytical modeling of temperature dependence, and attain improved estimation accuracy. In addition, the identification of FP-VARMA models is addressed. Two-Stage Least Squares (2SLS) and conditional ML type estimators are formulated, and their consistency and asymptotic normality are established. Furthermore, an effective method for 2SLS model estimation featuring a simplified procedure for obtaining residuals in the first stage is introduced. Conditions ensuring FP-VARMA model identifiability are also postulated. Model structure specification is based upon a novel two-step approach using Canonical Correlation Analysis (CCA) and proper forms of information criteria, thus avoiding the use of exhaustive search procedures. The performance characteristics of the identification approach are assessed via a Monte Carlo study, which also demonstrates the effectiveness of the proposed framework over conventional identification approaches based on VARMA modeling. An approach based on the novel FP models and statistical hypothesis testing for damage detection under different operating conditions is also proposed. It includes two versions: the first version is based upon the obtained modal parameters, whereas the second version is based upon the discrete-time model parameters. In an effort to streamline damage detection, procedures for compressing the information carried by the modal or the discrete-time model parameters via Principal Component Analysis (PCA) are also employed. The effectiveness of the proposed damage detection approach is assessed on a smart composite beam with hundreds of experiments corresponding to different temperatures. In its present form, the approach relies upon response (output-only) vibration data, although excitation-response data may be also used. FP-VAR modeling is used identify the temperature dependent structural dynamics, whereas a new scheme for model structure selection is introduced which avoids the use of exhaustive search procedures. The experimental results verify the capability of both versions of the approach to infer reliable damage detection under different temperatures. Furthermore, alternative methods attempting removal of the temperature effects from the damage sensitive features are also employed, allowing for a detailed and concise comparison. Finally, some special topics on global VARX modeling are treated. The focus is on the identification of the Pooled (P) and Constant Coefficient Pooled (CCP) VARX model classes. Although both model classes are of limited scope, they are useful tools for global model identification. In analogy to the FP-VARX/VARMA model case, the LS and conditional ML type estimators are studied for both model classes, whereas conditions ensuring model identifiability are also postulated. The relationships interconnecting the P-VARX and CCP-VARX models to the FP-VARX models in terms of compactness and achievable accuracy are studied, whereas their association to the conventional VARX models is also addressed. The effectiveness and performance characteristics of the novel global modeling approaches are finally assessed via Monte Carlo studies. / Η παρούσα διατριβή πραγματεύεται την αναγνώριση πολυμεταβλητών στοχαστικών συστημάτων που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας, βασιζόμενοι σε δεδομένα που αντιστοιχούν σε ένα δείγμα ενδεικτικών συνθηκών λειτουργίας. Η σπουδαιότητα του προβλήματος είναι μεγάλη, καθώς στην πράξη συναντώνται πολύ συχνά συστήματα όπου οι επιμέρους συνθήκες λειτουργίας παραμένουν σταθερές ανά χρονικά διαστήματα. Τυπικά παραδείγματα περιλαμβάνουν μηχανολογικές, αεροναυτικές και δομικές κατασκευές που λειτουργούν κάτω από διαφορετικές συνθήκες (π.χ. θερμοκρασίας και/ή υγρασίας) σε διαφορετικές συνθήκες (π.χ. περίοδος της ημέρας). Οι διαφορετικές συνθήκες λειτουργίας ενδέχεται να επηρεάσουν ένα σύστημα και ως εκ τούτου τα δυναμικά χαρακτηριστικά του. Λαμβάνοντας υπόψη ένα σύνολο δεδομένων που αντιστοιχούν σε διαφορετικές συνθήκες λειτουργίας, είναι επιθυμητή η εύρεση ενός "γενικευμένου" μοντέλου ικανού να περιγράψει το σύστημα σε όλο το φάσμα των αποδεκτών συνθηκών λειτουργίας. Στην παρούσα διατριβή το πρόβλημα αυτό αντιμετωπίζεται μέσω ενός καινοτόμου πλαισίου αναγνώρισης στοχαστικών μοντέλων Συναρτησιακής Σώρευσης (stochastic Functional Pooling Framework), το οποίο εισάγει συναρτησιακές εξαρτήσεις (αναφορικά με την κατάσταση λειτουργίας) στην δομή του μοντέλου. Το συγκεκριμένο πλαίσιο Συναρτησιακής Σώρευσης προσφέρει σημαντικά πλεονεκτήματα σε σχέση με άλλες μεθόδους εύρεσης γενικευμένων μοντέλων που χρησιμοποιούν μεθόδους παρεμβολής (interpolation) σε ένα σύνολο συμβατικών μοντέλων (ένα για κάθε συνθήκη λειτουργίας), όπως: (i) Η ταυτόχρονη διαχείριση δεδομένων που αντιστοιχούν σε διαφορετικές συνθήκες λειτουργίας, καθώς και η διευθέτηση των αλληλοεξαρτήσεων μεταξύ δεδομένων που ανήκουν σε διαφορετικές συνθήκες λειτουργίας παρέχοντας με τον τρόπο αυτό μοντέλα με βέλτιστη στατιστική ακρίβεια, (ii) η χρήση συμπτυγμένων μοντέλων τα οποία περιγράφουν με ακρίβεια τα δυναμικά χαρακτηριστικά του συστήματος σε κάθε κατάσταση λειτουργίας, αποφεύγοντας έτσι την χρήση συμβατικών μεθόδων παρεμβολής, (iii) ο προσδιορισμός των αβεβαιοτήτων στη μοντελοποίηση κάθε κατάστασης λειτουργίας μέσω εκτίμησης κατάλληλων διαστημάτων εμπιστοσύνης. Μέχρι στιγμής, η έρευνα πάνω στο πλαίσιο Συναρτησιακής Σώρευσης έχει επικεντρωθεί στα βαθμωτά στοχαστικά μοντέλα. Η παρούσα διατριβή σαν στόχο έχει (i) την κατάλληλη διαμόρφωση και επέκταση του πλαισίου Συναρτησιακής Σώρευσης για την περίπτωση πολυμεταβλητών στοχαστικών συστημάτων που λειτουργούν με πολλαπλές συνθήκες λειτουργίας , και (ii) την εισαγωγή μιας καινοτόμου μεθοδολογίας ανίχνευσης βλαβών για συστήματα που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας βασιζόμενη σε πολυμεταβλητά μοντέλα Συναρτησιακής Σώρευσης και στον στατιστικό έλεγχο υποθέσεων. Η περίπτωση των πολυμεταβλητών μοντέλων παρουσιάζει τεχνικές δυσκολίες που δεν συναντώνται στα βαθμωτά μοντέλα, καθώς η δομή των μοντέλων είναι πιο περίπλοκη ενώ η παραμετροποίησή τους είναι μη-τετριμμένη θέτοντας έτσι ζητήματα αναγνωρισιμότητας (model identifiability). Η παρούσα διατριβή εστιάζει σε Συναρτησιακά Σωρευμένα Διανυσματικά μοντέλα ΑυτοΠαλινδρόμησης με εΞωγενή είσοδο (Functionally Pooled Vector AutoRegressive with eXogenous excitation; FP-VARX), και σε Διανυσματικά μοντέλα ΑυτοΠαλινδρόμησης με Κινητό Μέσο Όρο (Functionally Pooled AutoRegressive with Moving Average; FP-VARMA). Τα μοντέλα αυτά μπορεί να θεωρηθούν ως γενικεύσεις των συμβατικών μοντέλων VARX/VARMA με την σημαντική διαφοροποίηση ότι οι παράμετροι του μοντέλου είναι συναρτήσεις της συνθήκης λειτουργίας. Το πρώτο κεφάλαιο της διατριβής επικεντρώνεται στην αναγνώριση μοντέλων FP-VARX. Αναπτύσσονται εκτιμήτριες βασισμένες στις μεθόδους των Ελαχίστων Τετραγώνων (Least Squares; LS) και της Μέγιστης Πιθανοφάνειας (Maximum Likelihood; ML), ενώ στη συνέχεια μελετώνται η συνέπεια (consistency) και η ασυμπτωτική κατανομή (asymptotic distribution)τους. Επιπλέον, καθορίζονται συνθήκες που εξασφαλίζουν την αναγνωρισιμότητα (identifiability) των FP-VARX μοντέλων, ενώ ο προσδιορισμός της δομής τους βασίζεται σε κατάλληλα τροποποιημένα κριτήρια πληροφορίας (information criteria). Η αποτίμηση της μοντελοποίησης με FP-VARX, καθώς επίσης και η αποτελεσματικότητά τους έναντι των συμβατικών μοντέλων VARX εξακριβώνεται μέσω προσομοιώσεων Monte Carlo. Στο δεύτερο κεφάλαιο διερευνάται η αναγνώριση των θερμοκρασιακών επιρροών στα δυναμικά χαρακτηριστικά μιας ευφυούς δοκού από σύνθετο υλικό. Το πρόβλημα μελετάται χρησιμοποιώντας συμβατικά μοντέλα καθώς και "γενικευμένα" μοντέλα. Η συμβατική μοντελοποίηση περιλαμβάνει μη-παραμετρικές παραστάσεις που βασίζονται στην μέθοδο Welch (ανάλυση στο πεδίο συχνοτήτων), καθώς και παραμετρικές παραστάσεις βασισμένες στα μοντέλα VARX (ανάλυση στο πεδίο χρόνου). H "γενικευμένη" μοντελοποίηση περιλαμβάνει παραστάσεις Σώρευσης με Σταθερές Παραμέτρους (Constant Coefficient Pooled VARX; CCP-VARX), καθώς και VARX παραστάσεις Συναρτησιακής Σώρευσης (Functionally Pooled VARX; FP-VARX). Η ανάλυση υποδεικνύει ότι τα χαρακτηριστικά των "γενικευμένων" και των συμβατικών μοντέλων βρίσκονται σε γενική συμφωνία μεταξύ τους. Ωστόσο, τα "γενικευμένα" μοντέλα περιγράφουν τα δυναμικά χαρακτηριστικά του συστήματος με μικρότερο αριθμό παραμέτρων, γεγονός που προσδίδει μεγαλύτερη ακρίβεια στην εκτίμησή τους. Το μοντέλο CCP-VARX τείνει να σταθμίσει τα δυναμικά χαρακτηριστικά του συστήματος σε κάποιον "μέσο όρο" με σχετική ακρίβεια. Απεναντίας το μοντέλο FP-VARX υπερέχει σε ακρίβεια, καθώς επιδεικνύει μια εξομαλυμένη καθοριστική εξάρτηση των δυναμικών χαρακτηριστικών του συστήματος με την θερμοκρασία, γεγονός που είναι συμβατό με την φυσική του προβλήματος. Το τρίτο κεφάλαιο επικεντρώνεται στην αναγνώριση μοντέλων FP-VARMA. Αναπτύσσονται εκτιμήτριες βασισμένες στις μεθόδους των Ελαχίστων Τετραγώνων Δύο Σταδίων (Two Stage Least Squares; 2SLS) και της Μέγιστης Πιθανοφάνειας (Maximum Likelihood; ML), ενώ στην συνέχεια μελετώνται η συνέπεια και η ασυμπτωτική κατανομή τους. Επιπλέον, εισάγεται μια νέα μέθοδος για την εκτίμηση 2SLS που απλοποιεί σημαντικά την διαδικασία εξαγωγής υπολοίπων (residuals) από το πρώτο στάδιο. Επίσης, καθορίζονται οι συνθήκες που εξασφαλίζουν αναγνωρισιμότητα στα μοντέλα FP-VARMA. Ο προσδιορισμός της δομής των μοντέλων FP-VARMA πραγματοποιείται χάρη σε μια μεθοδολογία δύο σταδίων που βασίζεται στην Ανάλυση Κανονικοποιημένων Συσχετίσεων (Canonical Correlation Analysis; CCA) και κριτηρίων πληροφορίας, αποφεύγοντας έτσι την εκτεταμένη χρήση αλγορίθμων αναζήτησης. Η αποτίμηση της μοντελοποίησης με FP-VARMA, καθώς επίσης και η αποτελεσματικότητά τους έναντι των συμβατικών VARMA εξακριβώνεται μέσω προσομοιώσεων Monte Carlo. Το τέταρτο κεφάλαιο πραγματεύεται την ανίχνευση βλαβών σε συστήματα που παρουσιάζουν πολλαπλές συνθήκες λειτουργίας. Προτείνεται μια νέα μεθοδολογία που βασίζεται σε καινοτόμα μοντέλα Συναρτησιακής Σώρευσης και στον στατιστικό έλεγχο υποθέσεων. Παρουσιάζονται δυο εκδόσεις της μεθοδολογίας: η πρώτη βασίζεται στα μορφικά χαρακτηριστικά του μοντέλου ενώ η δεύτερη στις παραμέτρους του μοντέλου. Επιπλέον, χρησιμοποιούνται μέθοδοι συμπίεσης της πληροφορίας που περιέχουν τα μορφικά χαρακτηριστικά ή οι παράμετροι του μοντέλου μέσω της Ανάλυσης Κύριων Συνιστωσών (Principal Component Analysis; PCA) σε μια προσπάθεια απλοποίησης της διαδικασίας ανίχνευσης βλαβών. Η αποτελεσματικότητα της μεθοδολογίας επαληθεύεται πειραματικά σε μια "ευφυή" δοκό από σύνθετο υλικό, η οποία ταλαντώνεται σε διαφορετικές θερμοκρασίες. Στην παρούσα μορφή της η μεθοδολογία χρησιμοποιεί δεδομένα απόκρισης ταλάντωσης, ωστόσο δεδομένα διέγερσης-απόκρισης μπορούν να χρησιμοποιηθούν εφόσον κριθεί σκόπιμο. Η εξάρτηση των δυναμικών χαρακτηριστικών της δοκού με την θερμοκρασία περιγράφεται με τη χρήση μοντέλων FP-VAR, ενώ εισάγεται μια νέα μέθοδος καθορισμού της δομής του μοντέλου που αποφεύγει την χρήση αλγορίθμων αναζήτησης. Πλήθος πειραμάτων που καλύπτουν ένα ευρύ θερμοκρασιακό πεδίο, καθώς και συγκρίσεις με άλλες μεθοδολογίες ανίχνευσης βλαβών, πιστοποιούν την ικανότητα της προτεινόμενης μεθοδολογίας να διαγνώσει την κατάσταση της δοκού σε διάφορες θερμοκρασίες. Το πέμπτο κεφάλαιο ασχολείται με ειδικά θέματα μοντελοποίησης των "γενικευμένων" VARX . Ιδιαίτερη προσοχή δίνεται στην μελέτη Σωρευμένων VARX (P-VARX) και CCP-VARX μοντέλων. Σε αντιστοιχία με τα μοντέλα FP, αναπτύσσονται εκτιμήτριες LS και ML, ενώ στην συνέχεια μελετώνται οι ιδιότητές τους. Επιπλέον, καθορίζονται οι συνθήκες που εξασφαλίζουν την αναγνωρισιμότητα των μοντέλων P-VARX και CCP-VARX. Μελετώνται επίσης και οι σχέσεις που συνδέουν τις δομές των μοντέλων P-VARX και CCP-VARX με τα FP-VARX ως προς την παραμετροποίησή τους και την ακρίβεια που επιτυγχάνουν. Επιπλέον, μελετάται και η σχέση των παραπάνω μοντέλων με τα συμβατικά VARX. Η αποτίμηση των γενικευμένων μοντέλων VARX αναφορικά με το πλήθος των εκτιμώμενων παραμέτρων και την ακρίβεια που επιτυγχάνουν εξακριβώνεται μέσω προσομοιώσεων Monte Carlo.
139

Delamination Modeling and Detection in Composite Structures

Keshava Kumar, S January 2014 (has links) (PDF)
Composite laminated structures are prone to delamination. Rotorcraft flexbeams, apart from many other aerospace primary load carrying members are made up of composite laminated structures. A delaminated primary load carrying member can lead to catastrophic failure of the system of which it is a part. Delamination modeling and detection in composite laminated structures are challenging areas of ongoing research worldwide. Existing literature falls short of addressing effects of widthwise partial delamination on the modal characteristics of beams. To address this issue, a new partial delamination model for composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two-noded C1-type Timoshenko beam element with four degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with a 3-D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the current work is that even partial delamination in long structures can be analyzed using a 1-D beam model, rather than using computationally more demanding 3-D or 2-D models. Rotor craft flexbeams are prone to delaminations, which in most realistic situations are partial along both the length and the width. However, the effect of partial delamination on the modal characteristics of the beam is not studied by researchers to the best of the author’s knowledge. Addressing this issue, a rotorcraft flexbeam is analysed here in the presence of delamination. A set of nonlinear governing equations for the rotating flexbeam are developed in hybrid basis. The flexbeam model developed has axial stretch, transverse displacement and flexural rotation in flapwise direction and twist as its degrees of freedom. The nonlinear governing differential equations are linearised and solved for eigenvalues and eigenvectors using a finite element method. The effects of angular speed and delamination size and location on the flexbeam modes are analysed. The results obtained using the proposed model are validated with the COMSOL 3-D finite element simulations. Next, the issue of delamination detection in beams is addressed. Mode shape curvature and Katz fractal dimension are used to detect the presence of partial delaminations in a beam. The effects of boundary conditions and location of delamination on the fractal dimension curve are studied. Usage of higher mode shape data for detection of delamination in beams is evaluated. Limitations of the Katz fractal dimension curve for delamination detection are enumerated. It is shown that fractal dimension measure and mode shape curvature can be used to detect the presence of partial delamination in beams. It is found that the torsional mode shape is best suited for partial delamination detection in beams. Apart from beams, Shell-and plate-like structures are also extensively used in aerospace structures. The modeling of multilayered plates is introduced herein with the intention to model delaminations in 2D. Carrera Unified Formulation(CUF)plate model, developed using variational formulations, is used to derive the stiffness matrices and to apply, the Principle of Virtual Displacement(PVD) and the Reissner Mixed Variational Theorem (RMVT). It is known that FEM implementation for plates leads to the phenomenon of numerical locking: the so-called membrane and shear locking effects. A well-known remedy for addressing locking is the use of the Mixed Interpolated Tensorial Components(MITC) technique. A strategy similar to MITC approach in the RMVT formulation is used to construct an advanced locking-free finite element to treat the multilayered plates. Composite laminated plates are prone to delamination. Implementation of delamination in the CUF frame work using nine-noded quadrilateral MITC9 elements is discussed. MITC9 elements are devoid of shear locking and membrane locking. Delaminated structures, as well as the corresponding healthy structures, are analysed for free vibration modes. The results from the present work are compared with those from available experimental or/and theoretical research articles or/and the 3-D finite element simulations. The effects of different kinds and different percentages of interfacial area of delaminations on the first three natural frequencies of the structure are discussed. The presence of the open-mode or breathing mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of the places between the second bending mode and the first torsional mode frequencies is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layer wise theory as compared to equivalent single layer theories for very large delaminations is stated. The effects of different kinds of delamination and its effect on the second bending and first torsional mode shapes are discussed.
140

Damage localization in civil engineering structures using dynamic strain measurements / Localisation de défauts dans les structures de génie civil à partir de mesures dynamiques de déformations

Tondreau, Gilles 26 April 2013 (has links)
This thesis focuses on the development of a new method for the continuous<p>monitoring of civil engineering structures in order to locate small damages automatically. A<p>review of the very wide literature on Structural Health Monitoring (SHM) points first out that<p>the methods can be grouped in four categories based on their need or not of a numerical model,<p>as well as their need or not of information of the damaged structure to be applied. This state<p>of the art of the SHM methods highlights the requirement to reach each levels of SHM, which<p>is in particular for the localization of small damages in civil engineering structures the needs<p>for a non-model based output-only damage sensitive feature extraction technique. The origin of<p>the local sensitivity of strains to damages is also analyzed, which justifies their use for damage<p>localization.<p>A new method based on the modal filtering technique which consists in combining linearly<p>the sensor responses in a specific way to mimic a single degree of freedom system and which<p>was previously developed for damage detection is proposed. A very large network of dynamic<p>strain sensors is deployed on the structure and split into several independent local sensor networks.<p>Low computational cost and fast signal processing techniques are coupled to statistical<p>control charts for robust and fully automated damage localization.<p>The efficiency of the method is demonstrated using time-domain simulated data on a simply<p>supported beam and a three-dimensional bridge structure. The method is able to detect and<p>locate very small damages even in the presence of noise on the measurements and variability<p>of the baseline structure if strain sensors are used. The difficulty to locate damages from acceleration<p>sensors is also clearly illustrated. The most common classical methods for damage<p>localization are applied on the simply supported beam and the results show that the modal filtering<p>technique presents much better performances for an accurate localization of small damages<p>and is easier to automate.<p>An improvement of the modal filters method referred to as adaptive modal filters is next<p>proposed in order to enhance the ability to localize small damages, as well as to follow their<p>evolution through modal filters updating. Based on this study, a new damage sensitive feature<p>is proposed and is compared with other damage sensitive features to detect the damages with<p>modal filters to demonstrate its interest. These expectations are verified numerically with the<p>three-dimensional bridge structure, and the results show that the adaptation of the modal filters<p>increases the sensitivity of local filters to damages.<p>Experimental tests have been led first to check the feasibility of modal filters to detect damages<p>when they are used with accelerometers. Two case studies are considered. The first work<p>investigates the experimental damage detection of a small aircraft wing equipped with a network<p>of 15 accelerometers, one force transducer and excited with an electro-dynamic shaker. A<p>damage is introduced by replacing inspection panels with damaged panels. A modified version<p>of the modal filtering technique is applied and compared with the damage detection based principal<p>component analysis of FRFs as well as of transmissibilities. The three approaches succeed<p>in the damage detection but we illustrate the advantage of using the modal filtering algorithm as<p>well as of the new damage sensitive feature. The second experimental application aims at detecting<p>both linear and nonlinear damage scenarios using the responses of four accelerometers<p>installed on the three-storey frame structure previously developed and studied at Los Alamos<p>National Labs. In particular, modal filters are shown to be sensitive to both types of damages,<p>but cannot make the distinction between linear and nonlinear damages.<p>Finally, the new method is tested experimentally to locate damages by considering cheap<p>piezoelectric patches (PVDF) for dynamic strain measurements. Again, two case studies are investigated.<p>The first work investigates a small clamped-free steel plate equipped with 8 PVDFs sensors, and excited with a PZT patch. A small damage is introduced at different locations by<p>fixing a stiffener. The modal filters are applied on three local filters in order to locate damage.<p>Univariate control charts allow to locate automatically all the damage positions correctly.<p>The last experimental investigation is devoted to a 3.78m long I-steel beam equipped with 20<p>PVDFs sensors and excited with an electro-dynamic shaker. Again, a small stiffener is added to<p>mimic the effect of a small damage and five local filters are defined to locate the damage. The<p>damage is correctly located for several positions, and the interest of including measurements<p>under different environmental conditions for the baseline as well as overlapping the local filters<p>is illustrated.<p>The very nice results obtained with these first experimental applications of modal filters<p>based on strains show the real interest of this very low computational cost method for outputonly<p>non-model based automated damage localization of real structures. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0726 seconds