• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 20
  • 15
  • 10
  • 7
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 140
  • 140
  • 71
  • 42
  • 37
  • 36
  • 30
  • 24
  • 22
  • 18
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effets neurocognitifs de la stimulation magnétique transcrânienne pour le trouble obsessionnel compulsif : études expérimentales en IRMf et essai thérapeutique / Neurocognitive effect of repetitive transcranial magnetic stimulation for obsessive compulsive disorder : fMRI experimental studies and clinical trial

Gaudeau-Bosma, Christian 23 October 2015 (has links)
Les Troubles Obsessionnels Compulsifs (TOC) sont composés de compulsions, qui sont des comportements répétés, et d'obsessions, qui sont des pensées intrusives. Leurs impacts sur le fonctionnement socio-professionnel handicapent et isolent considérablement les patients. Les traitements efficaces pour ces patients sont médicamenteux ou les thérapies cognitives et comportementales. Néanmoins, un nombre élevé de patients ne voient pas leurs symptômes diminuer suffisamment avec l'un ou l'autre des traitements ou en les combinant. Il est donc nécessaire de développer des traitements intermédiaires afin d'améliorer la palette de traitements des TOC. Une alternative thérapeutique utilisée en psychiatrie pour la dépression est la Stimulation Magnétique Transcrânienne répétée (TMS). Néanmoins, son efficacité reste difficile à démontrer dans le TOC, dû à une multitude de facteurs à prendre en compte, et peut nécessiter d'étudier le fonctionnement de la rTMS sur une population de sujets sains. Lors de notre première étude, nous avons évalué l'impact d'un protocole de rTMS sur les fonctions cognitives de sujets sains. Nous avons donc pu observer, indépendamment de la pathologie, l'effet de deux semaines de TMS sur les performances cognitives et sur l'activité cérébrale. Malgré une absence d'effet comportemental, une modification du réseau cortico-sous-cortical lié à une tâche de mémoire de travail a pu être montrée. Ces résultats orientent les recherches futures à modifier l'approche méthodologique, améliorer l'approche clinique des TOC, et changer l'approche neurophysiologique de la TMS dans le but de proposer un traitement complémentaire pour améliorer l'état clinique des patients. / Obsessive Compulsive Disorder (OCD) is a mental illness defined by the presence of compulsions which are repetitive behaviors and obsessions which are intrusive thoughts. OCD may have a dramatic impact on the social and professional lifes of patients. The treatments for OCD are medication and cognitive-behavioral therapy. Nevertheless, symptoms remain in 25 to 40% of patients. Repeated Transcranial Magnetic Stimulation (rTMS) represent a novel therapeutic option for OCD patients however its effectiveness has been difficult to prove partly due to a multitude of factors involving the rTMS technique itself. The first study evaluated the impact of a two-week rTMS protocol on cognitive functions in healthy subjects using fMRI during a working-memory task. In the absence of behavioral modification, we observed that compared to sham, rTMS induced changes at multiple nodes of the cerebral network activated by the task beyond the stimulation site. This result represents an encouraging perspective for rTMS intervention on pathological brain network in OCD because hyperactive regions in this disorder (orbitofrontal cortex and anterior cingulate cortex) are too deep to be directly stimulated by rTMS. Our second study targeted the supplementary motor area (SMA), which had been suggested as candidate target region lying near the anterior cingulate cortex. We used for four week rTMS in a group of OCD patients while pre- and post-treatment fMRI was acquired during performance of a cognitive inhibition task. Stimulation of the SMA did not result in significant clinical improvement. These results shall guide future research to address the methodological challenges and the neurophysiological mechanisms of rTMS to improve its clinical efficacy for OCD.
72

Design and Development of Smart Brain-Machine-Brain Interface (SBMIBI) for Deep Brain Stimulation and Other Biomedical Applications

Khan, Muhammad S 10 November 2016 (has links)
Machine collaboration with the biological body/brain by sending electrical information back and forth is one of the leading research areas in neuro-engineering during the twenty-first century. Hence, Brain-Machine-Brain Interface (BMBI) is a powerful tool for achieving such machine-brain/body collaboration. BMBI generally is a smart device (usually invasive) that can record, store, and analyze neural activities, and generate corresponding responses in the form of electrical pulses to stimulate specific brain regions. The Smart Brain-Machine-Brain-Interface (SBMBI) is a step forward with compared to the traditional BMBI by including smart functions, such as in-electrode local computing capabilities, and availability of cloud connectivity in the system to take the advantage of powerful cloud computation in decision making. In this dissertation work, we designed and developed an innovative form of Smart Brain-Machine-Brain Interface (SBMBI) and studied its feasibility in different biomedical applications. With respect to power management, the SBMBI is a semi-passive platform. The communication module is fully passive—powered by RF harvested energy; whereas, the signal processing core is battery-assisted. The efficiency of the implemented RF energy harvester was measured to be 0.005%. One of potential applications of SBMBI is to configure a Smart Deep-Brain-Stimulator (SDBS) based on the general SBMBI platform. The SDBS consists of brain-implantable smart electrodes and a wireless-connected external controller. The SDBS electrodes operate as completely autonomous electronic implants that are capable of sensing and recording neural activities in real time, performing local processing, and generating arbitrary waveforms for neuro-stimulation. A bidirectional, secure, fully-passive wireless communication backbone was designed and integrated into this smart electrode to maintain contact between the smart electrodes and the controller. The standard EPC-Global protocol has been modified and adopted as the communication protocol in this design. The proposed SDBS, by using a SBMBI platform, was demonstrated and tested through a hardware prototype. Additionally the SBMBI was employed to develop a low-power wireless ECG data acquisition device. This device captures cardiac pulses through a non-invasive magnetic resonance electrode, processes the signal and sends it to the backend computer through the SBMBI interface. Analysis was performed to verify the integrity of received ECG data.
73

The Electrode-Tissue Interface during Recording and Stimulation in the Central Nervous System

Lempka, Scott Francis 17 May 2010 (has links)
No description available.
74

Fusion of Multimodal Neuroimaging for Deep Brain Stimulation Studies

Cunningham, Dustin T. 25 June 2012 (has links)
No description available.
75

Deep brain surgery for pain

Pereira, Erlick Abilio Coelho January 2013 (has links)
Deep brain stimulation (DBS) is a neurosurgical intervention now established for the treatment of movement disorders. For the treatment of chronic pain refractory to medical therapies, several prospective case series have been reported, but few centres worldwide have published findings from patients treated during the last decade using current standards of technology. This thesis seeks to survey the current clinical status of DBS for pain, investigate its mechanisms and their interactions with autonomic function, its clinical limitations and ablative alternatives. Presented first is a review of the current status of analgesic DBS including contemporary clinical studies. The historical background, scientific rationale, patient selection and assessment methods, surgical techniques and results are described. The clinical outcomes of DBS of the sensory thalamus and periventricular / periaqueductal grey (PAVG) matter in two centres are presented including results from several pain and quality of life measures. A series of translational investigations in human subjects receiving DBS for pain elucidating mechanisms of analgesic DBS and its effects upon autonomic function are then presented. Single photon emission tomography comparing PAVG, VP thalamus and dual target stimulation is described. Somatosensory and local field potential (LFP) recordings suggesting PAVG somatotopy are shown. ABPM results demonstrating changes with PAVG DBS are given and Portapres studies into heart rate variability changes with ventral PAVG DBS are detailed. Investigations using naloxone are then shown to hypothesise separate dorsal opioidergic and ventral parasympathetic analgesic streams in the PAVG. Finally, cingulotomy in lung cancer to relieve pain and dyspnoea results are discussed in the context of altering pain and autonomic function by functional neurosurgery. Pain and autonomic interactions and mechanisms in deep brain surgery for pain are then discussed alongside its limitations with proposals made for optimising treatment and improving outcomes.
76

Comparing the radiological anatomy, electrophysiology, and behavioral roles of the pedunculopontine and subthalamic nuclei in the normal and parkinsonian brain

Aravamuthan, Bhooma Rajagopalan January 2008 (has links)
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and DBS of the pedunculopontine nucleus (PPN) have been shown to be effective surgical therapies for Parkinson’s disease (PD). To better understand the PPN and STN as DBS targets for PD, this research compares the anatomy, electrophysiology, and motor control roles of these nuclei. PPN and STN connections were examined in vivo in human subjects and in the non-human primate using probabilistic diffusion tractography. Both the PPN and STN were connected with each other and with the motor cortex (M1) and basal ganglia. After studying these anatomical connections in primates, their functional significance was further explored in an anesthetized rat model of PD. Examination of the electrophysiological relationship between the PPN and basal ganglia in the presence of slow cortical oscillatory activity suggested that excitatory input from the STN may normally modulate PPN spike timing but that inhibitory oscillatory input from the basal ganglia output nuclei has a greater effect on PPN spike timing in the parkinsonian brain. To examine transmission and modulation of oscillatory activity between these structures at higher frequencies, LFP activity was recorded from the PPN and STN in PD patients performing simple voluntary movements. Movement-related modulation of oscillatory activity predominantly occurred in the α (8-12 Hz) and low β (12-20 Hz) frequencies in the STN but in the high β (20-35 Hz) frequencies in the PPN, supporting observations from rodent studies suggesting that oscillatory activity is not directly transmitted from the STN to the PPN in PD. Finally, to better understand the roles of the STN and PPN in large-scale movement, the effects of STN and PPN DBS on gait abnormalities in PD patients were studied. DBS of the STN appeared to improve gait by optimising executive gait control while DBS of the PPN appeared to restore autonomic gait control. These results have several implications for DBS patient selection, surgical targeting, and for understanding the mechanisms underlying DBS efficacy.
77

Dynamics of cognitive control and flexibility in the anterior cingulate and prefrontal cortices

Boschin, Erica January 2013 (has links)
The body of work hereby presented aims at better defining the specific mechanisms underlying cognitive control and flexibility, and to investigate the neural substrates that might support these dynamics. More specifically, the anterior cingulate (ACC), dorsolateral prefrontal (dlPFC) and frontopolar (FPC) cortices have been proposed to play a fundamental role in monitoring and detecting the presence of environmental contingencies that require the recruitment of cognitive control (such as competition between responses in the presence of conflicting information), implementing cognitive control, and supporting higher-order cognitive processing, respectively. This thesis investigates the effects of damage to these regions, and of interference with their activity, on these processes. It also argues for the importance of dissociating possible separate cognitive control components that might differently contribute to behavioural adjustments (such as caution and attention/task-relevant processing), and provides one of the first attempts to quantify them within the parameters of a mathematical model of choice response-time, the Linear Ballistic Accumulator (LBA). The results confirm the crucial role of the dlPFC in modulating behavioural adjustments, as both damage and interference with this region’s activity significantly affect measures of conflict-induced behavioural adaptation. It is hypothesized that dlPFC might drive behavioural adjustments by encoding recent conflict history and/or supporting the automatization of a newly advantageous behavioural strategy during the early stages after a change in conflict levels. When a task does not involve competition between a habit and instructed behaviour, lesions or interference with ACC’s activity do not appear to affect behaviour in a manner that is consistent with the classic conflict-monitoring framework. It is suggested that its role might be better described as a more general monitoring and confirmatory mechanism that evaluates both actual and potential outcomes of an action, in order to proactively guide adjustments away from contextually disadvantageous responses. Finally, lesions to the FPC do not affect abstract-rule integration, but do impair the early stages of acquisition of a new abstract rule, when a previously rewarded rule stops being rewarded, and specifically when acquisition is dependent on self-initiated exploration. This suggests a role for FPC in the evaluation of multiple concurrent options in order to aid the development of new behavioural strategies.
78

Identifying neurocircuitry controlling cardiovascular function in humans : implications for exercise control

Basnayake, Shanika Deshani January 2012 (has links)
This thesis is concerned with the neurocircuitry that underpins the cardiovascular response to exercise, which has thus far remained incompletely understood. Small animal studies have provided clues, but with the advent of functional neurosurgery, it has now been made possible to translate these findings to humans. Chapter One reviews the background to the studies in this thesis. Our current understanding of the cardiovascular response to exercise is considered, followed by a discussion on the anatomy and function of various brain nuclei. In particular, the rationale for targeting the periaqueductal grey (PAG) and the subthalamic nucleus (STN) is reviewed. Chapter Two reviews the use of deep brain stimulation (DBS), in which deep brain stimulating electrodes are implanted into various brain nuclei in humans, in order to treat chronic pain and movement disorders. This technique not only permits direct electrical stimulation of the human brain, but also gives the opportunity to record the neural activity from different brain regions during a variety of cardiovascular experiments. This chapter also gives a detailed methodological description of the experimental techniques performed in the studies in this thesis. Chapter Three identifies the cardiovascular neurocircuitry involved in the exercise pressor reflex in humans using functional neurosurgery. It shows for the first time in humans that the exercise pressor reflex is associated with significantly increased neural activity in the dorsal PAG. The other sites investigated, which had previously been identified as cardiovascular active in both animals and humans, seem not to have a role in the integration of this reflex. Chapter Four investigates whether changes in exercise intensity affect the neurocircuitry involved in the exercise pressor reflex. It demonstrates that the neural activity in the PAG is graded to increases in exercise intensity and corresponding increases in arterial blood pressure. This chapter also provides evidence to suggest that neural activity in the STN corresponds to the cardiovascular changes evoked by the remote ischaemic preconditioning stimulus in humans. Chapter Five identifies the cardiovascular neurocircuitry involved during changes in central command during isometric exercise at constant muscle tension using muscle vibration. It shows that, in humans, central command is associated with significantly decreased neural activity in the STN. Furthermore, the STN is graded to the perception of the exercise task, i.e. the degree of central command. The other sites investigated appear not to have as significant a role in the integration of central command during the light exercise task that was undertaken. Chapter Six studies the changes in muscle sympathetic nerve activity (MSNA) during stimulation of various brain nuclei in humans. Regrettably, the results presented in this chapter are not convincing enough to support the hypothesis that stimulation of particular subcortical structures corresponds to changes in MSNA. However, the cardiovascular changes that were recorded during stimulation of the different subcortical structures are congruous with previous studies in both animals and humans. Chapter Seven presents a brief summary of the findings in this thesis.
79

Characterization of the Zona Incerta

Green, Heather Joyce 01 January 2005 (has links)
Parkinson's Disease affects more than 1 million people in the United States with 60,000 new cases being diagnosed each year. Currently, there is no cure for Parkinson's Disease, but there are several treatment options available. Currently the most popular surgical option is Deep Brain Stimulation. Microelectrode recording helps identify nuclei as the microelectrode passes through them. While the firing frequencies of the target nuclei are well defined, other nuclei are not. This study will attempt to characterize the Zona Incerta, which is the structure directly above the Subthalamic Nucleus, a target nucleus. Characterization of the firing frequency of the Zona Incerta will help aid Deep Brain Stimulation procedures. Looking at the Interspike Intervals for 25 files showed that the average firing frequency is 11.6Hz. A file recorded in the STN was used for comparison and to validate the methods used. This yielded an average firing frequency of 37.5Hz.
80

Imagerie per-opératoire des électrodes de stimulation cérébrale profonde et proposition d’une nouvelle modalité de repérage stéréotaxique indirect de la cible subthalamique / Intraoperative imaging of deep brain stimulation electrodes and proposition of a new normalized subthalamic target

Caire, François 20 December 2012 (has links)
L’efficacité de la stimulation cérébrale profonde subthalamique dans certains cas de maladie de Parkinson est maintenant bien établie. Toutefois, des progrès restent possibles, à la fois en terme de contrôle du geste chirurgical et en terme de définition de la cible chirurgicale. Dans la première partie de ce travail, nous nous sommes intéressés à l’optimisation du contrôle de l’implantation des électrodes de stimulation cérébrale profonde. Nous avons tout d’abord analysé rétrospectivement les résultats obtenus en réalisant une imagerie tridimensionnelle per-opératoire pour le contrôle de positionnement des électrodes. Nous nous sommes ensuite intéressés à la possibilité d’utiliser un repère de visée radiologique per-opératoire. Nous avons revu pour cela une série de patients ayant subi une réimplantation d’électrodes, pour lesquels l’électrode déjà en place était utilisée comme point de repère à la fois pour définir la cible de la réimplantation et pour contrôler radiologiquement l’implantation de la nouvelle électrode. Dans la seconde partie, nous avons travaillé à l’optimisation de la cible subthalamique. Nous avons tout d’abord évalué la pertinence du repérage du faisceau mamillo-thalamique sur des coupes IRM axiales comme marqueur de la coordonnée y du bord antérieur du noyau subthalamique. Ensuite, nous avons tâché de proposer une normalisation tridimensionnelle de l’espace stéréotaxique à partir de données recueillies dans une série de volontaires sains. Enfin, pour une série de patients opérés avec un bon résultat, nous avons cherché à corréler la position des contacts actifs en stimulation chronique avec des points de repères profonds visibles en IRM. Nous avons pu proposer ainsi une cible normalisée dont les coordonnées sont : x = 0,44xbord latéral du V3 + 10,71mm; y = 0,69xfaisceau mamillothalamique + 1,62 mm ou 0,34 distance CACP + 2,52 mm; z = 0,72 hauteur du thalamus – 16 mm. Cette cible sera évaluée dans une future étude prospective. / The clinical efficacy of subthalamic deep brain stimulation is now well established. Nevertheless, progress is possible, regarding especially (1) the accuracy of electrodes implantation and (2) the definition of the surgical target. In the first part of this work, we worked on the optimization of DBS electrodes implantation. First, we analyzed retrospectively the results obtained by using intra-operative 3D imaging for the control of microelectrodes and definite leads placement. Thereafter, we considered the possibility to use a radiological landmark for intraoperative controls. To this end, we studied the cases of patients who underwent reimplantation of DBS electrodes. The initial electrode (still implanted) was used as a landmark: (1) for the deifntion of the reimplantation target and (2) for the radiological control of the new lead positioning. In the second part, we worked on the optimization of the surgical target. First, we assessed the interest of the mamillothalamic tract as a landmark of the anteroposterior coordinate of the anterior border of the STN in MR axial images. Thereafter, we tried to identify MR landmarks for tridimensionnal normalization of the stereotactic space. Finally, we tried to correlate the coordinates of active contacts with MR-defined landmarks in a series of patients that had been operated with good clinical results. Based on our results, we can propose the following coordinates for a new normalized subthalamic target : x = 0.44xlat edge 3rd ventricle + 10.71mm; y = 0.69xmamillo-thalamic tract + 1.62 mm or 0.34 ACPC length + 2.52 mm; z = 0.72xthalamus height – 16 mm. We will assess this target in a future prospective study.

Page generated in 0.0472 seconds