• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 144
  • 14
  • 10
  • 8
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 568
  • 568
  • 275
  • 248
  • 240
  • 203
  • 191
  • 143
  • 141
  • 127
  • 122
  • 107
  • 107
  • 106
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Análise dos limites máximos de inserção de geração eólica em redes de distribuição conforme a variação de tensão de regime permanente / Maximum integration levels of wind power in distribution grids according to steady state voltage variation requerements

Löwenberg, Vanessa Viquetti 12 April 2013 (has links)
Made available in DSpace on 2017-07-10T17:11:45Z (GMT). No. of bitstreams: 1 DISSERTACAO VANESSAVIQUETTI LOWENBERG.pdf: 2250957 bytes, checksum: 81895e5a2a510f6aea4627b4b6c0d230 (MD5) Previous issue date: 2013-04-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work considers the connection of wind power units to the distribution system, aiming at verifying the maximum power limits that can be connected complying with given connection requirements. The maximum power limits have been characterized in terms of maximum integration levels, to the equivalent capacity in the connection node, and in terms of maximum penetration levels, to the full load power feeder. The steady-state voltage in the distribution system nodes has to comply with a priori given maximum variation limits for all possible wind farm working conditions, supplying from 20 to 100% of its nominal power. The research has been developed in two different distribution feeders: a 5-nodes distribution feeder, connecting the wind farm at four different points and considering three different load levels; a 32-nodes distribution feeder, connecting the wind farm to ten different nodes of the system and also considering three different load levels. The maximum integration and penetration levels of wind power have been evaluated in terms of (i) the connection node characteristics (equivalent X/R ratio impedance and voltage); (ii) the feeder load; (iii) the connection node. The connection of either one or two wind farms has been considered for both feeders, assuming wind farms with equal characteristics. The analysis showed strong influence of the impedance X/R ratio on the maximum wind energy integration and penetration levels. The feeder load influences these levels in a non-linear manner and in some cases also an in inverse way, i.e. the load increasing can either increase or decrease the maximum integration level. The equivalent voltage influence on the maximum wind power integration and penetration was not evident in the performed tests. The feeder structure did influence the levels since, in many cases, the maximum integration and penetration levels of wind power have not been determined by the voltage in the connection node but by the voltage in other feeder s node. In general, the connection of two wind farms showed higher wind energy penetration levels compared to only one wind farm, being more or less expressive according to the connecting node characteristics. / Este trabalho se insere no contexto do estudo da conexão de unidades de geração eólica em sistemas de distribuição no sentido de verificar quais os limites máximos de potência que po- dem ser interligados atendendo a determinados requisitos de conexão. Os limites máximos de potência são caracterizados em termos dos níveis máximos de inserção de geração eólica, relativos à capacidade equivalente vista pelo nó de conexão, e da máxima penetração de geração eólica, relativos à carga instalada no alimentador. Exige-se que a tensão de regime permanente nos nós do alimentador de distribuição atenda a limites máximos pré-estabelecidos de variação para todas as condições operativas possíveis do parque eólico produzindo desde 20% até 100% de sua potência nominal. O estudo foi realizado através de simulação computacional sobre dois alimentadores de distribuição diferentes: um alimentador com 5 nós, conectando o parque eólico em quatro diferentes pontos deste sistema e considerando três níveis diferentes de carregamento; e um alimentador com 32 nós, conectando o parque eólico em dez diferentes pontos deste sistema e considerando também três níveis diferentes de carregamento. Os níveis máximos de inserção e penetração de geração eólica foram analisados em função: (i) das características do nó de conexão (relação X/R da impedância e tensão equivalentes); (ii) do carregamento do alimentador; (iii) do nó de conexão. Para os dois alimentadores foram considerados os casos da conexão de um e de dois parques eólicos, sendo que em todos os casos foram adotados parques eólicos idênticos. As análises realizadas mostraram grande influência da relação X/R da impedância equivalente tanto sobre a inserção quanto a penetração de geração eólica. O carregamento do alimentador influenciou de maneira não linear e também em alguns casos de maneira inversa, significando que o aumento do carregamento pode tanto aumentar quanto reduzir a máxima inserção de geração eólica. A influência da tensão equivalente sobre a inserção e penetração de geração eólica não mostrou-se muito evidente nos testes realizados. A topologia do alimentador teve influência, pois em diversos casos os limites má- ximos de inserção e penetração de geração eólica foram determinados pela tensão em nós do alimentador distintos do nó de conexão do parque. De maneira geral, a conexão de dois parques eólicos mostrou atingir níveis superiores de penetração de geração eólica em comparação a um só parque, podendo ser mais ou menos expressiva conforme a característica dos nós de conexão envolvidos.
352

[en] CRITICAL EVALUATION OF TECHNICAL-ECONOMIC POTENTIAL OF ELECTRIC ENERGY SELFGENERATION IN BRAZIL / [pt] AVALIAÇÃO CRÍTICA DO POTENCIAL TÉCNICO-ECONÔMICO DA AUTOGERAÇÃO DE ENERGIA ELÉTRICA NO BRASIL

BRUNO DE QUEIROZ LIMA 10 March 2005 (has links)
[pt] O objetivo desse trabalho é avaliar o potencial técnico- econômico nacional da autogeração de energia elétrica. O levantamento desse potencial é realizado a partir do desenvolvimento de uma metodologia determinística para os clientes de alta tensão da concessionária LIGHT no estado do Rio de Janeiro, extrapolando-a para a estimativa do potencial brasileiro, através dos dados de consumo nacional. A geração distribuída é analisada a partir do atual estado da arte da tecnologia disponível para motores alternativos de combustão interna, ciclos Diesel e Otto. Os motores alternativos possuem tecnologia amplamente difundida, alta escala de produção, alta eficiência e baixo custo de investimento de aquisição, principalmente quando comparado a outras tecnologias de geração elétrica de pequeno e médio porte. Dessa forma, optou-se pela tecnologia dos motores alternativos como o mais adequado para a autogeração. Os motores alternativos têm grande potencial para servir de base para expansão da geração distribuída nacional. São considerados como alternativas de fontes energéticas para a autogeração, o óleo diesel e o gás natural. Para a operação dos motores ciclo Diesel foi considerada, além da hipótese de funcionamento pelo modo tradicional a óleo diesel, sua operação com um kit de conversão para combustível dual. Este permite uma substituição do óleo diesel pelo gás natural em torno de 80 por cento. Já para os motores alternativos ciclo Otto foi apenas considerada a utilização do energético gás natural. A viabilidade econômica do investimento em centrais de geração distribuída, é obtida quando traçado um paralelo entre o atual custo da energia elétrica que é fornecida pela concessionária e o custo da aquisição e operação do sistema de autogeração. O cálculo de viabilidade será dado por uma ótica estritamente econômica. Considerando-se que a atratividade do empreendimento seja dada por uma taxa interna de retorno do investimento mínima de 15 por cento a.a para um horizonte de 15 anos, é estimado que a geração distribuída possa representar 2,6 por cento da energia elétrica gerada nacionalmente ou cerca de 7.173 GWh/ano, concentrada principalmente para geração de horário de ponta. Os geradores a diesel representam 44,6 por cento desse total, os geradores dieselgás 55,2 por cento e os geradores a gás cerca de 0,2 por cento. Isto significa um consumo diário de 2,2 MMm3 de gás natural e 2.800 m3 de óleo diesel. De uma maneira geral a autogeração não se viabiliza economicamente para geração fora de ponta, em virtude do baixo custo da energia elétrica neste período. Em função da penetração do gás natural no mercado nacional, é realizada uma análise de sensibilidade entre custo desse energético e o aumento do potencial de geração distribuída nacional. Conclui-se, que a queda do preço do gás natural pode aumentar ainda mais o potencial de geração distribuída baseado nos geradores diesel-gás, além de também viabilizar os geradores gás. Finalmente são abordados e analisados os impactos e benefícios trazidos pela geração distribuída ao sistema atual de geração e transmissão nacional. / [en] The objective of this work is to evaluate the technical- economic potential of electric energy self-generation in Brazil. A deterministic methodology will be built for market evaluation. It will be based on a developed model for high voltage customers from LIGHT, located in state of Rio de Janeiro and extrapolated to establish the national market. The extrapolation will be made through the national consumption data. The distributed generation is analyzed from the state of the art of reciprocating internal combustion engines, Diesel and Otto cycles. These engines have widespread technology, high efficiency and offer low acquisition cost when compared with other small and medium scale gensets technologies. In that way, they were chosen, to be the alternatives for the distributed generation. The reciprocating engines have great potential to support the expansion of the distributed generation in Brazil. Diesel oil and natural gas are considered as the fuel alternatives for the gensets. Besides the usual diesel oil, used as fuel for diesel engines, it was considered the mix between diesel oil and natural gas. The mix is handled with an auxiliary conversion kit. It allows diesel oil being substituted around 80% by natural gas. It was only considered natural gas fuel for the gas engines. The economic feasibility of the investment in distributed generation is achieved when a comparison is made between the current cost of the electric energy, which is supplied by the local utility company, and the cost of acquisition and operation of the self generation system. The feasibility will be given by a strict economic aspect. Considering the attractiveness for the enterprise, it is given by a minimum internal rate of return of 15 percent per year in a horizon of 15 years. It is estimated that the national distributed generation can represent 2.6 percent of all national electric generation or 7,173 GWh/year. Mainly for generation at peak hours. The diesel oil gensets represents 44.6 percent of that total, the diesel-gas gensets 55.2 percent and the gas gensets around 0.2 percent. Meaning a daily consumption of 2.2 MMm3 of natural gas and 2,800 m3 of oil diesel. Self generation isn`t economic feasible at off-peak hours, because the low tariff value. For the perspective of expansion of the natural gas net distribution in Brazil, a sensibility analysis was accomplished between the natural gas cost and increase of the national distributed generation market. It is concluded that if the natural gas cost less, the national distributed generation market would grow, based mainly in diesel-gas and gas gensets. Finally, the impacts and benefits brought by distributed generation in the current scenery of national generation and transmission systems were analyzed.
353

Análise e projeto via algoritmo de otimização heurística de um controlador de ordem fracionária PIλ para a melhoria do desempenho de um controle em tensão utilizado em micro redes / Analysis and design of fractional order controller PIλ via heuristic optimization algorithm to improve the performance of a voltage control applied in micro grids

Ottoboni, Klebber de Araújo 19 February 2016 (has links)
A inclusão de fontes alternativas no sistema de energia elétrica possibilita a otimização dos recursos naturais disponíveis para geração. A conexão dessas fontes deve ser efetuada de forma a evitar índices de qualidade de energia incondizentes aos limites estabelecidos por normas nacionais e internacionais. Nesse contexto, sistemas de Geração Distribuída (GD) conectados à rede de distribuição via controle tensão/potência utilizam controladores Proporcional+Ressonantes (P+R) para produzir tensões com mínimas distorções na presença de cargas não lineares. Além disso, esse tipo de solução apresenta resultados satisfatórios na presença de outros tipos de carga (linear, não linear e conexão de máquina de indução), entretanto, para uma carga RLC com frequência de ressonância igual à frequência fundamental, o sistema de GD torna-se instável e as distorções harmônicas ultrapassam os limites mínimos estabelecidos para assegurar a qualidade de energia. Dessa forma, essa dissertação de mestrado propõe a substituição do controlador P+R da frequência fundamental por um controlador de ordem fracionária PIλ, projetado através de um algoritmo de otimização heurística. Os resultados obtidos através de simulação demonstram que o controlador proposto apresenta resultados satisfatórios para todas as cargas testadas: Não Linear; Motor de Indução Trifásico e RLC com frequência de ressonância igual à fundamental da rede. Entretanto, os resultados experimentais mostraram uma sensibilidade quanto à mudança de carga e quanto aos parâmetros de discretização do controlador, sugerindo a necessidade de uma análise mais rigorosa na etapa de projeto de modo a se ter robustez quanto à variação de carga. / The insertion of alternative sources in the power system enables the optimization of natural resources available for electrical generation. The connection of these sources to the grid has to be made in order to avoid indices of power quality greater than the limits established by national and international standards. In this context, a Distributed Generation (DG) systems connected to the grid via voltage/power control use a proportional+resonant (P+R) controller to produce not only the fundamental frequency but also to reduce the voltage distortion when nonlinear loads are connected to the DG terminals. Additionally, this type of solution shows satisfactory results for linear, balanced, unbalanced and direct connection of induction machine as well. However, for parallel RLC load with frequency of resonance equals to the fundamental frequency of the grid, the DG system operation becomes unstable with high levels of harmonic distortions and an oscillatory behavior. In this context, we propose the replacement of the PR controller for the fundamental frequency by a fractional order controller PIλ designed via a heuristic optimization algorithm. To prove the feasibility of the proposed approach a set of simulations are presented, however, the experimental prototype shown the sensitivity of the controller for different loads and for the controller discretization parameters suggesting the need for more analysis during the design procedures of the PIλ controller to achieve the expected robustness.
354

OPTIMAL DISTRIBUTION FEEDER RECONFIGURATION WITH DISTRIBUTED GENERATION USING INTELLIGENT TECHNIQUES

Ghaweta, Ahmad 01 January 2019 (has links)
Feeder reconfiguration is performed by changing the open/close status of two types of switches: normally open tie switches and normally closed sectionalizing switches. A whole feeder or part of a feeder may be served from another feeder by closing a tie switch linking the two while an appropriate sectionalizing switch must be opened to maintain the radial structure of the system. Feeder reconfiguration is mainly aiming to reduce the system overall power losses and improve voltage profile. In this dissertation, several approaches have been proposed to reconfigure the radial distribution networks including the potential impact of integrating Distributed Energy Resources (DER) into the grid. These approaches provide a Fast-Genetic Algorithm “FGA” in which the size and convergence speed is improved compared to the conventional genetic algorithm. The size of the population matrix is also smaller because of the simple way of constructing the meshed network. Additionally, FGA deals with integer variable instead of a binary one, which makes FGA a unique method. The number of the mesh/loop is based on the number of tie switches in a particular network. The validity of the proposed FGA is investigated by comparing the obtained results with the one obtained from the most recent approaches. The second the approach is the implementation of the Differential Evolution (DE) algorithm. DE is a population-based method using three operators including crossover, mutation, and selection. It differs from GA in that genetic algorithms rely on crossover while DE relies on mutation. Mutation is based on the differences between randomly sampled pairs of solutions in the population. DE has three advantages: the ability to find the global optimal result regardless of the initial values, fast convergence, and requirement of a few control parameters. DE is a well-known and straightforward population-based probabilistic approach for comprehensive optimization. In distribution systems, if a utility company has the right to control the location and size of distributed generations, then the location and size of DGs may be determined based on some optimization methods. This research provides a promising approach to finding the optimal size and location of the planned DER units using the proposed DE algorithm. DGs location is obtained using the sensitivity of power losses with respect to real power injection at each bus. Then the most sensitive bus is selected for installing the DG unit. Because the integration of the DG adds positive real power injections, the optimal location is the one with the most negative sensitivity in order to get the largest power loss reduction. Finally, after the location is specified, the proposed Differential Evolution Algorithm (DEA) is used to obtain the optimal size of the DG unit. Only the feasible solutions that satisfy all the constraints are considered. The objective of installing DG units to the distribution network is to reduce the system losses and enhance the network voltage profile. Nowadays, these renewable DGs are required to equip with reactive power devices (such as static VAR compensators, capacitor banks, etc.), to provide reactive power as well as to control the voltage at their terminal bus. DGs have various technical benefits such as voltage profile improvement, relief in feeder loading, power loss minimization, stability improvement, and voltage deviation mitigation. The distributed generation may not achieve its full potential of benefits if placed at any random location in the system. It is necessary to investigate and determine the optimum location and size of the DG. Most distribution networks are radial in nature with limited short-circuit capacity. Therefore, there is a limit to which power can be injected into the distribution network without compromising the power quality and the system stability. This research is aiming to investigate this by applying DG technologies to the grid and keeping the system voltage within a defined boundary [0.95 - 1.05 p.u]. The requirements specified in IEEE Standard 1547 are considered. This research considers four objectives related to minimization of the system power loss, minimization of the deviations of the nodes voltage, minimization of branch current constraint violation, and minimization of feeder’s currents imbalance. The research formulates the problem as a multi-objective problem. The effectiveness of the proposed methods is demonstrated on different revised IEEE test systems including 16 and 33-bus radial distribution system.
355

Small-Signal Modeling and Analysis of Parallel-Connected Power Converter Systems for Distributed Energy Resources

Zhang, Yu 27 April 2011 (has links)
Alternative energy resources (such as photovoltaics, fuel cells, wind turbines, micro-turbines, and internal combustion engines) and energy storage systems (such as batteries, supercapacitors, and flywheels) are increasingly being connected to the utility grid, creating distributed energy resources which require the implementation of an effective distributed power management strategy. Parallel-connected power converters form a critical component in such a distributed energy resources system. This dissertation addresses small-signal modeling and analysis of parallel-connected power converter systems operating in distributed energy environments. This work focuses on DC-DC and DC-AC power converters. First, this work addresses the small-signal modeling and analysis of parallel-connected power converters in a battery/supercapacitor hybrid energy storage system. The small-signal model considers variations in the current of individual energy storage devices and the DC bus voltage as state variables, variations in the power converter duty cycles as control variables, and variations in the battery and the supercapacitor voltages and the load current as external disturbances. This dissertation proposes several different control strategies and studies the effects of variations in controller and filter parameters on system performance. Simulation studies were carried out using the Virtual Test Bed (VTB) platform under various load conditions to verify the proposed control strategies and their effect on the final states of the energy storage devices. Control strategies for single DC-AC three-phase power converters are also identified and investigated. These include a novel PV (active power and voltage) control with frequency droop control loop, PQ (active power and reactive power) control, voltage control, PQ control with frequency droop control, and PQ control with voltage and frequency droop control. Small-signal models of a three-phase power converter system with these control strategies were developed, and the impact of parameter variations on the stability of a PV controlled converter were studied. Moreover, a small-signal model of parallel-connected three-phase DC-AC power converters with individual DC power supplies and network is proposed. The simulations carried out in stand-alone and grid-connected modes verify the combined control strategies that were developed. In addition, a detailed small-signal mathematical model that can represent the zero-sequence current dynamics in parallel-connected three-phase DC-AC power converters that share a single DC power source is presented. The effects of a variety of factors on the zero-sequence current are investigated, and a control strategy to minimize the zero-sequence current is proposed. Time-domain simulation studies verify the results. Simulations of a parallel-connected DC-AC power converter system with nonlinear load were carried out. The active power filter implemented in this system provides sharing of harmonic load between each power converter, and reduces harmonic distortion at the nonlinear load by harmonic compensation.
356

A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations

Ituzaro, Fred Agyekum 2012 May 1900 (has links)
Smart radial distribution grids will include advanced metering infrastructure (AMI) and significant distributed generators (DGs) connected close to loads. DGs in these radial distribution systems (RDS) introduce bidirectional power flows (BPFs) and contribute to fault current. These BPFs may cause unwanted tripping of existing overcurrent (OC) protection devices and result in permanent outages for a large number of customers. This thesis presents a protection approach that modified an existing overcurrent protection scheme to reduce the number of customers affected by faults in RDS with DGs. Further, a technique is presented that utilizes customers loading information from smart meters in AMI to improve the sensitivity of substation OC relays by adaptively changing the pickup settings. The modified protection approach involves predefining zones in RDS with DGs and installing directional OC relays and circuit breakers at the zonal boundaries. Zonal boundary relays determine faulted zones by sharing information on the direction of detected faults current using binary state signals over a communication medium. The technique to adapt the substation relay pickup settings uses the demand measurements from smart meters for two 12-hour intervals from the previous day to determine the maximum diversified demand at the relay?s location. The pickup settings of the substation relay for the two 12-hour intervals during the following day for the zone supplied by the substation are adaptively set based on the current that corresponds to the maximum diversified demand from the previous day. The techniques were validated through simulations in EMTP/PSCAD using an expanded IEEE 34 node radial test feeder that included DGs and a secondary distribution level. By decentralizing the control of the zonal boundary breakers, the single point of failure was eliminated in the modified protection approach. The cases studied showed that the modified protection approach allows for selective identification and isolation of the faulted zones. Also, the sensitivity of the substation OC relay was improved by at least 24% by using the pickup settings for the two 12-hour intervals from the smart meter demand measurements compared to the pickup settings computed using the conventional methodology based on the maximum loading of the zone.
357

A technical analysis of distributed generation options for Tshwane electricity network.

Juma, Denis Wabwire. January 2011 (has links)
M. Tech. Electrical Engineering. / This study analyses the technologies with potential to generate this much needed power and transmit the electricity from the point of generation to the end use location. South Africa has abundant supplies of indigenous primary energy resources such as coal, wind, and solar. The global shift from regulation of electricity and other energy markets, community awareness of environmental impact caused by large conventional power plants, and advances in renewable and high efficiency technologies have led to greater interest in DG technologies based on Renewable Energy Sources (RES). In this study, DG based on renewable energy sources (wind, solar and energy from the waste) is considered. Their potential contribution within Tshwane is assessed.This research project presents a technical analysis of the Tshwane Electricity Network incorporating distributed renewable energy sources such as biomass, wind, solar and small-hydro. Their sizing and placement within the distribution systems is analysed in order to minimise the electrical network losses and to guarantee acceptable voltage profile. The optimisation process is a load flow based algorithm.
358

Topology development and analysis for multiple input DC/DC converter

Choung, Seung Hoon 31 May 2011 (has links)
Nowadays, the number of applications which need more than one power source is increasing. Distributed generating systems or micro-grid systems normally use more than one power source or more than one kind of energy source. Also, to increase the utilization of renewable energy sources, diversified energy source combination is recommended. For example, a wind-photovoltaic generating system, a combination of a wind generator and photovoltaic array, can give a greater degree of freedom when choosing the install location. The combination of more power sources and diversified power sources makes it possible to obtain higher availability in a power system. A parallel connection of converters has been used to integrate more than one energy source in a power system. However, a multiple-input converter (MIC) can generally have the following advantages compare to a combination of several individual converters; (1) cost reduction, (2) compactness, (3) more expandability and (4) greater manageability. First, this research suggests MIC topology comparison criteria that can be used as a decision guide for choosing a MIC topology depending on the application. Even though there are some MIC topology classification methods such as by the kind of combining methods, the classification methods are not enough to choose one particular topology. The comparison criteria presented in this dissertation are practical enough to decide which topology is suitable and should be chosen. Second, a new MI modified inverse Watkins-Johnson converter (MIMIWJC) without a coupled inductor is proposed. The circuit configuration of this converter and its operation principles are described, including the open-loop and closed-loop circuit. For control purposes, a small signal model of the proposed converter is developed using Middlebrook’s extra element theorem. In addition, two possible control methods are introduced in this dissertation. Finally, the theoretical analysis of the proposed converter is verified with simulations and experiments. / text
359

Μελέτη προβλήματος κατανεμημένης παραγωγής στα συστήματα ηλεκτρικής ενέργειας

Λάμπρου, Λάζαρος, Σταφυλιάς, Σπυρίδων 28 August 2009 (has links)
Σε αυτή τη διπλωματική εργασία διερευνούνται οι προδιαγραφές που πρέπει να ικανοποιούνται ώστε να είναι εφικτή η σύνδεση εγκαταστάσεων κατανεμημένης παραγωγής στα δίκτυα διανομής και η εφαρμογή τους σε ένα φωτοβολταϊκό σύστημα που συνδέεται στο δίκτυο χαμηλής τάσης. Στο πρώτο κεφάλαιο γίνεται μια επισκόπηση της παρούσας κατάστασης στην ηλεκτρική ενέργεια και αναλύονται οι λόγοι που οδήγησαν στην ανάπτυξη της κατανεμημένης παραγωγής οι οποίοι συνοψίζονται στους περιορισμούς στην κατασκευή νέων γραμμών μεταφοράς, στην αυξημένη ζήτηση παροχής ηλεκτρικής ενέργειας υψηλής αξιοπιστίας, στην απελευθέρωση της αγοράς ηλεκτρικής ενέργειας, στους προβληματισμούς για τις κλιματικές αλλαγές και στην εξάντληση των ορυκτών καυσίμων. Έπειτα αναλύεται ο ορισμός της κατανεμημένης παραγωγής σύμφωνα με τα διάφορα διεθνή ινστιτούτα ηλεκτρικής ενέργειας και αναπτύσσονται οι τεχνολογίες που περιλαμβάνει οι οποίες διαχωρίζονται σε τεχνολογίες φυσικού καυσίμου (fossil fuel technologies) και σε ανανεώσιμες πηγές ενέργειας. Στις πρώτες περιλαμβάνονται οι μηχανές εσωτερικής καύσης, οι αεριοστροβιλικοί σταθμοί, οι μικροστρόβιλοι ή μικροτουρμπίνες και οι σταθμοί συνδυασμένου κύκλου ενώ στις ανανεώσιμες πηγές ενέργειας περιλαμβάνονται οι ανεμογεννήτριες, τα κύτταρα καυσίμου (fuel cells), οι φωτοβολταϊκές γεννήτριες, τα μικρά υδροηλεκτρικά και οι μονάδες παραγωγής ηλεκτρικής ενέργειας από βιομάζα και φυσικό αέριο. Η λειτουργία ενός ηλεκτρικού δικτύου ελέγχεται από συσκευές προστασίας και ρύθµισης της τάσης, που έχουν σκοπό την παροχή προς τους καταναλωτές ηλεκτρικής ενέργειας αποδεκτής ποιότητας, ελαχιστοποιώντας τον αριθµό των σφαλµάτων και προσφέροντας υψηλό επίπεδο ασφάλειας. Η σύνδεση στο δίκτυο µονάδων κατανεμημένης παραγωγής πρέπει να συµβαδίζει µε αυτές τις γενικές αρχές, ώστε αφενός µεν να µην προκαλούνται ενοχλήσεις στους λοιπούς καταναλωτές και αφετέρου να υπάρχει συµβατότητα µεταξύ του δικτύου διανοµής και των εγκαταστάσεων των παραγωγών. Στο δεύτερο κεφάλαιο αναφέρονται οι προϋποθέσεις που πρέπει να ισχύουν για τη σύνδεση και παράλληλη λειτουργία των εγκαταστάσεων παραγωγής µε τα δίκτυα διανοµής, καθώς και ο απαιτούµενος εξοπλισµός ζεύξης και προστασίας, µε στόχο την αποτελεσµατική αντιµετώπιση της πλειονότητας των περιπτώσεων. Οι τεχνικές προδιαγραφές που περιγράφονται αφορούν στη σύνδεση παραγωγών στο δίκτυο µέσης τάσης (ΜΤ) ή χαµηλής τάσης (ΧΤ). Βασικά κριτήρια και προϋποθέσεις που εξετάζονται προκειµένου να επιτραπεί η σύνδεση νέων εγκαταστάσεων παραγωγής είναι η επάρκεια του δικτύου (γραμμών, μετασχηματιστών κλπ.), η συµβολή στη στάθµη βραχυκύκλωσης, οι αργές µεταβολές της τάσης (µόνιµης κατάστασης), οι ταχείες µεταβολές της τάσης, οι εκποµπές flicker, οι εκπομπές αρμονικών, η διαµόρφωση των προστασιών της διασύνδεσης εγκαταστάσεων-δικτύου και η επίπτωση στη λειτουργία συστηµάτων Τηλεχειρισµού Ακουστικής Συχνότητας (ΤΑΣ). Τα κριτήρια και οι µέθοδοι εξέτασης που περιγράφονται στηρίζονται κατά κύριο λόγο στη σειρά προτύπων 61000 της IEC (International Electrotechnical Commission) και εξασφαλίζουν την ικανοποίηση των απαιτήσεων του ευρωπαϊκού προτύπου ΕΝ 50160 (πρότυπο ΕΛΟΤ ΕΝ 50160 και Οδηγία διανοµής 120 της ΔΕΗ Α.Ε.). Στο τρίτο κεφάλαιο πραγματοποιείται μια μελέτη εφαρμογής των παραπάνω προδιαγραφών σε ένα σύστημα που εξομοιώθηκε με χρήση του προγράμματος PSCAD. Το σύστημα αποτελείται από μια φωτοβολταϊκή συστοιχία μέγιστης ισχύος 4,8 kW, έναν μετατροπέα συνεχούς/εναλλασσόμενης τάσης ή αντιστροφέα (DC to AC converter) που λειτουργεί με τη μέθοδο PWM (Pulse Width Modulation ή διαμόρφωση εύρους παλμού), ένα σύστημα παρακολούθησης του σημείου μέγιστης ισχύος που αποδίδει η συστοιχία (MPPT Maximum Power Point Tracker), ένα μετασχηματιστή 150V/380V για την ανύψωση της τάσης στην έξοδο του αντιστροφέα στα επίπεδα τάσης του δικτύου, ένα δίκτυο χαμηλής τάσης και δύο φορτία RL. Εκτενής αναφορά γίνεται στις εκπομπές αρμονικών που παρουσιάζονται στο σύστημα στην έξοδο του αντιστροφέα. Αρχικά γίνεται μελέτη χωρίς φίλτρο LC στην έξοδο του αντιστροφέα και στη συνέχεια παρατηρούμε τον τρόπο με τον οποίο το φίλτρο LC επιδρά στη μείωση των αρμονικών σε επιτρεπτά πλαίσια. Τέλος διερευνούνται οι διακυμάνσεις τάσης του δικτύου κατά τη ζεύξη του φωτοβολταϊκού συστήματος με το δίκτυο, πραγματοποιείται μια μελέτη του συστήματος σε περίπτωση βραχυκυκλωμάτων και διερευνάται η επίπτωση σε συστήματα τηλεχειρισμού ακουστικής συχνότητας. / -
360

Incorporating distributed generation into distribution network planning : the challenges and opportunities for distribution network operators

Wang, David Tse-Chi January 2010 (has links)
Diversification of the energy mix is one of the main challenges in the energy agenda of governments worldwide. Technology advances together with environmental concerns have paved the way for the increasing integration of Distributed Generation (DG) seen over recent years. Combined heat and power and renewable technologies are being encouraged and their penetration in distribution networks is increasing. This scenario presents Distribution Network Operators (DNOs) with several technical challenges in order to properly accommodate DG developments. However, depending on various factors, such as location, size, technology and robustness of the network, DG might also be beneficial to DNOs. In this thesis, the impact of DG on network planning is analysed and the implications for DNOs in incorporating DG within the network planning process are identified. In the first part, various impacts of DG to the network, such as network thermal capacity release, security of supply and on voltage, are quantified through network planning by using a modified successive elimination method and voltage sensitivity analysis. The results would potentially assist DNOs in assessing the possibilities and effort required to utilise privately-owned DG to improve network efficiency and save investment. The quantified values would also act as a fundamental element in deriving effective distribution network charging schemes. In the second part, a novel balanced genetic algorithm is introduced as an efficient means of tackling the problem of optimum network planning considering future uncertainties. The approach is used to analyse the possibilities, potential benefits and challenges to strategic network planning by considering the presence of DG in the future when the characteristics of DG are uncertain.

Page generated in 0.051 seconds