Spelling suggestions: "subject:"[een] ELLIPTIC OPERATORS"" "subject:"[enn] ELLIPTIC OPERATORS""
21 |
Théorie de l'indice pour les familles d'opérateurs G-transversalement elliptiques / Index theory for families of G-transversally elliptic operatorsBaldare, Alexandre 16 February 2018 (has links)
Le problème de l'indice est de calculer l'indice d'un opérateur elliptique en termes topologiques. Ce problème fut résolu par M. Atiyah et I. Singer en 1963 dans "The index of elliptic operators on compact manifolds". Quelques années plus tard, ces auteurs ont fourni une nouvelle preuve dans "The index of elliptic operators I" permettant plusieurs généralisations et applications. La première est la prise en compte de l'action d'un groupe compact G, dans ce cadre on obtient une égalité dans l'anneau des représentations de G. Par la suite ils ont généralisé ce résultat au cadre des familles d'opérateurs elliptiques paramétrées par un espace compact dans "The index of elliptic operators IV", ici l'égalité vit dans la K-théorie de l'espace paramétrant la famille.Une autre généralisation importante est celle des opérateurs transversalement elliptiques par rapport à l'action d'un groupe G, c'est-à-dire elliptiques dans le sens transverse aux orbites de l'action d'un groupe sur une variété. Cette classe d'opérateurs a été étudié pour la première fois dans le cadre d'un opérateur P agissant sur une variété M par M. Atiyah (et I. Singer) dans "Elliptic operators and compact groups", en 1974. Dans cet article l'auteur définit une classe indice et montre qu'elle ne dépend que de la classe du symbole en K-théorie. Il montre ensuite qu'elle vérifie différents axiomes : action libre, multiplicativité et excision. Ces différents axiomes permettent alors de ramener le calcul de l'indice à un espace euclidien muni de l'action d'un tore. Par la suite, cette classe d'opérateurs a été étudier du point de vue de la K-théorie bivariante par P. Julg [1982] et plus récemment dans le cadre des actions propres sur une variété non compacte par G. Kasparov [2016].Dans cette thèse, nous nous intéressons aux familles d'opérateurs G-transversalement elliptiques. Nous définissons une classe indice en K-théorie bivariante de Kasparov. Nous vérifions qu'elle ne dépend que de la classe du symbole de la famille en K-théorie. Nous montrons que notre classe indice vérifie les propriétés d'action libre, de multiplicativité et d'excision espérées en K-théorie bivariante. Nous montrons ensuite un théorème d'induction et de compatibilité avec les applications de Gysin. Ces derniers théorèmes permettent de ramener le calcul de l'indice au cas d'une famille triviale pour l'action d'un tore comme dans le cadre d'un seul opérateur sur une variété. Nous démontrons ensuite qu'on peut associer à cette classe indice un caractère de Chern à coefficients distributionnels sur G à valeurs dans la cohomologie de de Rham de l'espace paramétrant lorsque c'est une variété. Pour ce faire, nous utilisons l'homologie locale de M. Puschnigg [2003] et une technique de M. Hilsum et G. Skandalis [1987]. Par la suite, nous nous intéressons aux formules de Berline et Vergne dans ce cadre. Avant de passer aux formules générales pour une famille d'opérateurs G-transversalment elliptiques, on commence par regarder si on obtient les mêmes formules dans le cadre elliptique. On montre alors des égalités similaires à celles obtenues par N. Berline et M. Vergne [1985] dans le cadre d'un opérateur elliptique G-invariant. Dans un dernier chapitre, on montre la formule de Berline-Vergne dans le cadre des familles d'opérateurs G-transversalement elliptiques. On utilise ici la formule de Berline-Vergne pour un opérateur G-transversalement elliptique et les différentes techniques mises en place dans les chapitres précédents. / The index problem is to calculate the index of an elliptic operator in topological terms. This problem was solved by M. Atiyah and I. Singer in 1963 in "The index of elliptic operators on compact manifolds". Few years later, these authors have given a new proof in "The index of elliptic operators I" allowing several generalizations and applications. The first is taking into account of the action of a compact group G, in this frame they obtain an equality in the ring of the representations of G. Later they generalized this result to the framework of the families of elliptic operators parameterized by a compact space in "The index of elliptic operators IV", here equality lives in the K-theory of the space of parameter.Another important generalization is the transversely elliptic operators with respect to a group action, that is to say, elliptic in the transverse direction to the orbits of a group action on a manifold. This class of operators has been studied for the first time by M. Atiyah (and I. Singer) in "Elliptic operators and compact groups", in 1974. In this article the author defines an index class and shows that it depends only on the symbol class in K-theory. Then he shows that it verifies different axioms: free action, multiplicativity and excision. These different axioms allows to reduce the calculation of the index to an Euclidean space equipped with an action of a torus. Next, this class of operators has been studied from the point of view of bivariant K-theory by P. Julg [1982] and more recently in the context of proper action on a non-compact manifolds by G. Kasparov [2016].In this thesis, we are interested in families of G-transversely elliptic operators. We define an index class in Kasparov bivariant K-theory. We verify that it depends only on the class of the symbol of the family in K-theory. We show that our index class satisfies the expected free action, multiplicativity and excision properties in bivariant K-theory. We then show a theorem of induction and compatibility with Gysin maps. These last theorems allows to reduce the calculation of the index to the case of a trivial family for the action of a torus as in the framework of a single operator on a manifold. We then prove that we can associate to this index class a Chern character with distributional coefficients on G with values in the de Rham cohomology of the parameter space when it is a manifold. To do this, we use the bivariant local cyclic homology of M. Puschnigg [2003] and a technique of M. Hilsum and G. Skandalis [1987].Before treating the general framework of families of G-transversely elliptic operators, we look at the elliptic case. We show that the expected formulas are true in this context. In the last chapter, we show the Berline-Vergne formula in the context of families of G-transversely elliptic operators. We use here the Berline-Vergne formula for a G-transversely elliptic operator and the different methods used in the previous chapters.
|
22 |
Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. / Uniqueness of spacelike hypersurfaces with constant higher order curvature in generalized Robertson-Walker spacetimesJonatan Floriano da Silva 26 March 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudaremos, de acordo com Alias e Colares em [11], o problema de unicidade para hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em um
espaÃo-tempo de Robertson-Walker generalizado (GRW). Em particular, consideraremos a seguinte pergunta: Sob quais condiÃÃes deve uma hipersuperfÃcie tipo-espaÃo compacta
com curvatura mÃdia de ordem superior constante em um espaÃo-tempo GRW espacialmente fechado ser uma fatia tipo-espaÃo? Provaremos que isto ocorre, essencialmente,
sob a entÃo chamada condiÃÃo de convergÃncia nula. Nossa abordagem à baseada no uso das transformaÃÃes de Newton (e seus operadores diferenciais associados) e nas fÃrmulas
de Minkowski para hipersuperfÃcies tipo-espaÃo.
|
23 |
[en] RESULTS OF AMBROSETTI-PRODI TYPE FOR NON-SELFADJOINT ELLIPTIC OPERATORS / [pt] RESULTADOS DO TIPO AMBROSETTI-PRODI PARA OPERADORES ELÍTICOS NÃO AUTO-ADJUNTOSANDRE ZACCUR UCHOA CAVALCANTI 13 April 2018 (has links)
[pt] O célebre teorema de Ambrosetti-Prodi estuda perturbações do Laplaciano sob condições de Dirichlet por funções não lineares que saltam sobre o autovalor principal do operador. Diversas extensões desse resultado foram obtidos para operadores auto-adjuntos, em particular por Berger-Podolak em 1975, que deram uma descrição geométrica do conjunto solução. Nós empregamos técnicas baseadas no princípio do máximo que nos permite obter novos resultados inclusive para o cenário auto-adjunto. Em particular, nós mostramos que o operador semi-linear é uma dobra global. Obtemos também uma contagem exata de soluções para esses operadores ainda quando a perturbação não é suave. / [en] The celebrated Ambrosetti-Prodi theorem studies perturbations of the Dirichlet Laplacian by a nonlinear function jumping over the principal eigenvalue of the operator. Various extensions of this landmark result were obtained for self-adjoint operators, in particular by Berger-Podolak in 1975, who gave a geometrical description of the solution set. In this thesis we show that similar theorems are valid for non self-adjoint operators. We employ techniques based on the maximum principle, which even let us obtain new results in the self-adjoint setting. In particular, we show that the semilinear operator is a fold. As a consequence, we obtain exact count of solutions for these operators even when the perturbation is non-smooth.
|
24 |
Homogenization of Optimal Control Problems in a Domain with Oscillating BoundaryRavi Prakash, * January 2013 (has links) (PDF)
Mathematical theory of homogenization of partial differential equations is relatively a new area of research (30-40 years or so) though the physical and engineering applications were well known. It has tremendous applications in various branches of engineering and science like : material science ,porous media, study of vibrations of thin structures, composite materials to name a few. There are at present various methods to study homogenization problems (basically asymptotic analysis) and there is a vast amount of literature in various directions. Homogenization arise in problems with oscillatory coefficients, domain with large number of perforations, domain with rough boundary and so on. The latter one has applications in fluid flow which is categorized as oscillating boundaries.
In fact ,in this thesis, we consider domains with oscillating boundaries. We plan to study to homogenization of certain optimal control problems with oscillating boundaries. This thesis contains 6 chapters including an introductory Chapter 1 and future proposal Chapter 6. Our main contribution contained in chapters 2-5. The oscillatory domain under consideration is a 3-dimensional cuboid (for simplicity) with a large number of pillars of length O(1) attached on one side, but with a small cross sectional area of order ε2 .As ε0, this gives a geometrical domain with oscillating boundary. We also consider 2-dimensional oscillatory domain which is a cross section of the above 3-dimensional domain.
In chapters 2 and 3, we consider the optimal control problem described by the Δ operator with two types of cost functionals, namely L2-cost functional and Dirichlet cost functional. We consider both distributed and boundary controls. The limit analysis was carried by considering the associated optimality system in which the adjoint states are introduced. But the main contribution in all the different cases(L2 and Dirichlet cost functionals, distributed and boundary controls) is the derivation of error estimates what is known as correctors in homogenization literature. Though there is a basic test function, one need to introduce different test functions to obtain correctors. Introducing correctors in homogenization is an important aspect of study which is indeed useful in the analysis, but important in numerical study as well.
The setup is the same in Chapter 4 as well. But here we consider Stokes’ Problem and study asymptotic analysis as well as corrector results. We obtain corrector results for velocity and pressure terms and also for its adjoint velocity and adjoint pressure. In Chapter 5, we consider a time dependent Kirchhoff-Love equation with the same domain with oscillating boundaries with a distributed control. The state equation is a fourth order hyperbolic type equation with associated L2-cost functional. We do not have corrector results in this chapter, but the limit cost functional is different and new. In the earlier chapters the limit cost functional were of the same type.
|
25 |
Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operatorLopez Rios, Luis Fernando 10 January 2014 (has links)
Le travail présenté est dédié à des problèmes d'EDP non linéaires. L'idée principale est de construire des solutions régulières á certaines EDPs elliptiques et hypo-elliptiques et étudier leur propriétés qualitatives. Dans une première partie, on considère un problème sur-critique du type $$-Delta u = lambda e^u$$ avec $lambda > 0$ posé dans un domaine extérieur avec conditions de Dirichlet homogènes. Une réduction en dimension finie permet de prouver l'existence d'un nombre infini de solutions régulières quand $lambda$ est assez petit. Dans une deuxième partie, on étudie la concentration de solutions d'un problème non local $$(-Delta)^s u = u^{p pm epsilon}, u>0, epsilon > 0$$ dans un domaine borné, régulier sous conditions de Dirichlet homogènes. Ici, on prend $0 < s < 1$ et $p:=(N+2s)/(N-2s)$, l'exposant de Sobolev critique. Une réduction en dimension finie dans des espaces fonctionnels bien choisis est utilisée. La partie principale de la fonction réduite est donnée en termes des fonctions de Green et Robin sur le domaine. On prouve que l'existence de solutions dépend des points critiques de la fonction susmentionnée augmentée d'une condition de non-dégénérescence. Enfin, on considère un problème non local dans le groupe de Heisenberg $H$. On s'intéresse à des propriétés de rigidité des solutions stables de $(-Delta_H)^s v = f(v)$ sur $H$, $s in (0,1)$. Une inégalité de type Poincaré connectée à un problème dégénéré dans $R^4_+$ est prouvée. Au travers d'une procédure d'extension, cette inégalité est utilisée pour donner un critère sous lequel les lignes de niveaux de la solution de l'EDP sont des surfaces minimales dans $H$. / This work is devoted to nonlinear PDEs. The aim is to find regular solutions to some elliptic and hypo-elliptic PDEs and study their qualitative properties. The first part deals with the supercritical problem $$ -Delta u = lambda e^u,$$ $lambda > 0$, in an exterior domain under zero Dirichlet condition. A finite-dimensional reduction scheme provides the existence of infinitely many regular solutions whenever $lambda$ is sufficiently small.The second part is focused on the existence of bubbling solutions for the non-local equation $$ (-Delta)^s u =u^p, ,u>0,$$in a bounded, smooth domain under zero Dirichlet condition; where $0<s<1$ and $p:=(N+2s)/(N-2s) pm epsilon$ is close to the critical exponent ($epsilon > 0$ small). To this end, a finite-dimensional reduction scheme in suitable functional spaces is used, where the main part of the reduced function is given in terms of the Green's and Robin's functions of the domain. The existence of solutions depends on the existence of critical points of such a main term together with a non-degeneracy condition.In the third part, a non-local entire problem in the Heisenberg group $H$ is studied. The main interests are rigidity properties for stable solutions of $$(-Delta_H)^s v = f(v) in H,$$ $s in (0,1)$. A Poincaré-type inequality in connection with a degenerate elliptic equation in $R^4_+$ is provided. Through an extension (or ``lifting") procedure, this inequality will be then used to give a criterion under which the level sets of the above solutions are minimal surfaces in $H$, i.e. they have vanishing mean $H$-curvature.
|
26 |
Cohomology groups on hypercomplex manifolds and Seiberg-Witten equations on Riemannian foliationsWeber, Patrick 23 June 2017 (has links) (PDF)
The thesis comprises two parts. In the first part, we investigate various cohomological aspects of hypercomplex manifolds and analyse the existence of special metrics. In the second part, we define Seiberg-Witten equations on the leaf space of manifolds which admit a Riemannian foliation of codimension four. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
27 |
Étude de problèmes différentiels elliptiques et paraboliques sur un graphe / A qtudy of elliptic and parabolic differential problems on graphsVasseur, Baptiste 06 February 2014 (has links)
Après une présentation des notations usuelles de la théorie des graphes, on étudie l'ensemble des fonctions harmoniques sur les graphes, c'est à dire des fonctions dont le laplacien est nul. Ces fonctions forment un espace vectoriel et sur un graphe uniformément localement fini, on montre que cet espace vectoriel est soit de dimension un, soit de dimension infinie. Lorsque le graphe comporte une infinité de cycles, ce résultat tombe en défaut et on exhibe des exemples qui montrent qu'il existe un graphe sur lequel les harmoniques forment un espace vectoriel de dimension n, pour tout n. Un exemple de graphe périodique est également traité. Ensuite, toujours pour le laplacien, on étudie plus précisément sur les arbres uniformément localement finis les valeurs propres dont l'espace propre est de dimension infini. Dans ce cas, il est montré que l'espace propre contient un sous-espace isomorphe à l'ensemble des suites réelles bornées. Une inégalité concernant le spectre est donnée dans le cas spécial où les arêtes sont de longueur un. Des exemples montrent que ces inclusions sont optimales. Dans le chapitre suivant, on étudie le comportement asymptotique des valeurs propres pour des opérateurs elliptiques d'ordre 2 quelconques sous des conditions de Kirchhoff dynamiques. Après réécriture du problème sous la forme d'un opérateur de Sturm-Liouville, on écrit le problème de façon matricielle. Puis on trouve une équation caractéristique dont les zéros correspondent aux valeurs propres. On en déduit une formule pour l'asymptotique des valeurs propres. Dans le dernier chapitre, on étudie la stabilité de solutions stationnaires pour certains problèmes de réaction-diffusion où le terme de non linéarité est polynomial. / After a quick presentation of usual notations for the graph theory, we study the set of harmonic functions on graphs, that is, the functions whose laplacian is zero. These functions form a vectorial space. On a uniformly locally finite tree, we shaw that this space has dimension one or infinity. When the graph has an infinite number of cycles, this result change and we describe some examples showing that there exists a graph on which the harmonic functions form a vectorial space of dimension n, for all n. We also treat the case of a particular periodic graph. Then, we study more precisely the eigenvalues of infinite dimension. In this case, the eigenspace contains a subspace isomorphic to the set of bounded sequences. An inequality concerning the spectral is given when edges length is equal to one. Examples show that these inclusions are optimal. We also study the asymptotic behavior of eigenvalues for elliptic operators under dynamical Kirchhoff node conditions. We write the problem as a Sturm-Liouville operator and we transform it in a matrix problem. Then we find a characteristic equation whose zeroes correspond to eigenvalues. We deduce a formula for the asymptotic behavior. In the last chapter, we study the stability of stationary solutions for some reaction-diffusion problem whose the non-linear term is polynomial.
|
28 |
The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions. / The analysis of Toeplitz operators, commutative Toeplitz algebras and applications to heat kernel constructions.Issa, Hassan 19 June 2012 (has links)
No description available.
|
Page generated in 0.0628 seconds