• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 16
  • 12
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cooperative Diversity for Inter-Vehicular Communications

Hussain, Muhammad Jawwad 01 May 2008 (has links)
Recent technological advances and pervasiveness of wireless communication devices have offered novel and promising solutions to the road safety problem and on-the-go entertainment. One such solution is the Inter-Vehicular Communications (IVC) where vehicles cooperate in receiving and delivering the messages to each other, establishing a decentralized communication system. The communication between vehicles can be made more effective and reliable at the physical layer by using the concept of space-time coding (STC). STC demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degree of freedom offered by the spatial dimension of the wireless. However, the use of multiple antenna at the receiver is not feasible because of the size and power limitations. Cooperative diversity, which is also known as user cooperation is ideal to overcome these limitations by introducing a new concept of using the antenna of neighboring node. This technique exploits the broadcast nature of wireless transmissions and creates a virtual (distributed) antenna array through cooperating nodes to realize spatial diversity advantage. Although there has been a growing literature on cooperative diversity, the current literature is mainly limited to Rayleigh fading channel model which typically assumes a wireless communication scenario with a stationary base station antenna above roof-top level and a mobile station at street level. In this thesis, we investigate cooperative diversity for inter-vehicular communication based on cascaded Rayleigh fading. This channel model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatters around the two mobile terminals. We investigate the performance of amplify-and-forward relaying for an inter-vehicular cooperative scheme assisted by either a road-side access point or another vehicle which acts as a relay. Our diversity analysis reveals that the cooperative scheme is able to extract the full distributed spatial diversity. We further formulate a power allocation problem for the considered scheme to optimize the power allocated to broadcasting and relaying phases. Performance gains up to 3 dB are obtained through optimum power allocation depending on the relay location.
12

Cooperative Diversity for Inter-Vehicular Communications

Hussain, Muhammad Jawwad 01 May 2008 (has links)
Recent technological advances and pervasiveness of wireless communication devices have offered novel and promising solutions to the road safety problem and on-the-go entertainment. One such solution is the Inter-Vehicular Communications (IVC) where vehicles cooperate in receiving and delivering the messages to each other, establishing a decentralized communication system. The communication between vehicles can be made more effective and reliable at the physical layer by using the concept of space-time coding (STC). STC demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degree of freedom offered by the spatial dimension of the wireless. However, the use of multiple antenna at the receiver is not feasible because of the size and power limitations. Cooperative diversity, which is also known as user cooperation is ideal to overcome these limitations by introducing a new concept of using the antenna of neighboring node. This technique exploits the broadcast nature of wireless transmissions and creates a virtual (distributed) antenna array through cooperating nodes to realize spatial diversity advantage. Although there has been a growing literature on cooperative diversity, the current literature is mainly limited to Rayleigh fading channel model which typically assumes a wireless communication scenario with a stationary base station antenna above roof-top level and a mobile station at street level. In this thesis, we investigate cooperative diversity for inter-vehicular communication based on cascaded Rayleigh fading. This channel model provides a realistic description of inter-vehicular channel where two or more independent Rayleigh fading processes are assumed to be generated by independent groups of scatters around the two mobile terminals. We investigate the performance of amplify-and-forward relaying for an inter-vehicular cooperative scheme assisted by either a road-side access point or another vehicle which acts as a relay. Our diversity analysis reveals that the cooperative scheme is able to extract the full distributed spatial diversity. We further formulate a power allocation problem for the considered scheme to optimize the power allocated to broadcasting and relaying phases. Performance gains up to 3 dB are obtained through optimum power allocation depending on the relay location.
13

Performance Analysis of Cognitive Radio Network over SIMO System / Performance Analysis of Cognitive Radio Network over SIMO System

Haider, Iqbal Hasan, Rabby, MD. Fazla January 2012 (has links)
As resources are limited, radio spectrum becomes congested due to the growth of wireless applications. However, measurements address the fact that most of the licensed spectrums experience low utilization even in intensively teeming areas. In the exertion to improve the utilization of the limited spectrum resources, cognitive radio networks have emerged as a powerful technique to resolve this problem. There are two types of user in cognitive radio networks (CRNs) named as primary user (PU) and secondary user (SU). Therein, the CRN enables the SU to utilize the unused licensed frequency of the PU if it possibly finds the vacant spectrum or white space (known as opportunistic spectrum access). Alternatively, SU can transmit simultaneously with the PU provided that transmission power of SU does not cause any harmful interference to the PU (known as spectrum sharing systems). In this thesis work, we study fundamental knowledge of the CRNs and focus on the performance analysis of the single input multiple output (SIMO) system for spectrum sharing approach. We assume that a secondary transmitter (SU-Tx) has full channel state information (CSI). The SU-Tx can adjust its transmit power not to cause harmful interference to the PU and obtain an optimal transmit rate. In particular, we derive the closed-form expressions for the cumulative distribution function (CDF), outage probability and an analytical expression for symbol error probability (SEP). / As resources are limited, radio spectrum becomes congested due to the growth of wireless applications. However, measurements address the fact that most of the licensed spectrums experience low utilization even in intensively teeming areas. In the exertion to improve the utilization of the limited spectrum resources, cognitive radio networks have emerged as a powerful technique to resolve this problem. There are two types of user in cognitive radio networks (CRNs) named as primary user (PU) and secondary user (SU). Therein, the CRN enables the SU to utilize the unused licensed frequency of the PU if it possibly finds the vacant spectrum or white space (known as opportunistic spectrum access). Alternatively, SU can transmit simultaneously with the PU provided that transmission power of SU does not cause any harmful interference to the PU (known as spectrum sharing systems). In this thesis work, we study fundamental knowledge of the CRNs and focus on the performance analysis of the single input multiple output (SIMO) system for spectrum sharing approach. We assume that a secondary transmitter (SU-Tx) has full channel state information (CSI). The SU-Tx can adjust its transmit power not to cause harmful interference to the PU and obtain an optimal transmit rate. In particular, we derive the closed-form expressions for the cumulative distribution function (CDF), outage probability and an analytical expression for symbol error probability (SEP). / Iqbal Hasan Haider, cell: +46704571807 MD. Fazla Rabby, cell: +46734965477
14

Performance Evaluation of Space-Time Coding on an Airborne Test Platform

Temple, Kip 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / Typical airborne test platforms use multiple telemetry transmit antennas in a top and bottom configuration in order to mitigate signal shadowing during maneuvers on high dynamic platforms. While mitigating one problem, this also creates a co-channel interference problem as the same signal, time delayed with differing amplitude, is sent to both antennas. Space-Time Coding (STC) was developed with the intention of mitigating this co-channel interference problem, also known as the "two antenna problem". Lab testing and preliminary flight testing of developmental and pre-production hardware has been completed and documented. This is the first test dedicated to assessing the performance of a production STC system in a real-world test environment. This paper will briefly describe lab testing that preceded the flight testing, describes the airborne and ground station configurations used during the flight test, and provides detailed results of the performance of the space time coded telemetry link as compared against a reference telemetry link.
15

ARTM CPM Receiver/Demodulator Performance: An Update

Temple, Kip 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / Since the waveform was first developed by the Advanced Range Telemetry Program (ARTM) and adopted by the Range Commanders Council Telemetry Group (RCC/TG), receiver/demodulators for the ARTM Continuous Phase Modulation (CPM) waveform have undergone continued development by several hardware vendors to boost performance in terms of phase noise, detection performance, and resynchronization time. These same results were initially presented at the International Telemetry Conference (ITC) 2003 when hardware first became available supporting this waveform, at the time called ARTM Tier II. This paper reexamines the current state of the art performance of ARTM CPM receiver/demodulators available in the marketplace today.
16

Analysis and Compensationfor Clipping-like Distortion of the Transmitted Signal in Massive MIMO Systems

Fayad, Adel January 2018 (has links)
This project consists of analyzing and finding solutions to the effect of non-linear distortionon the performance of a Massive Multiple Input Multiple Output (MIMO) system interms of Spectral Efficiency (SE) and Symbol Error Rate (SER). Massive MIMO is one ofthe technologies that are considered the backbone of the 5th generation of wireless communicationsand therefore this technology has gathered much interest from researchersand companies alike [19], as it is proven that this kind of system greatly improves thecapacity of the wireless connection [8]. Since Massive MIMO is still a relatively newtechnology and it is yet to be implemented for commercial use, there are several challengesthat arise when trying to implement such a system. One of these problems arisefrom the fact that the Power Amplifiers (PAs) in the transmitters of Massive MIMO systemsare non-linear and thus impose a distortion on the transmitted signals of the system[12]. The thesis aims to study this non-linear effect on the performance of massive MIMOsystems by first modelling the distortion effect on the transmitted signals using two differentnon-linear models. Moreover, closed-form expressions for one of the models areformed to facilitate the simulation of the non-linear model and facilitate the analysis ofthe distortion effect on the performance metrics. Then the established system model issimulated and based on the results, the effect of each of the power amplifier non-lineardistortion models on the performance metrics of the Massive MIMO system is studied.Furthermore, based on the analysis of the simulation results, a compensation mechanismis introduced to the Massive MIMO system in order to mitigate the distortion effect onthe system performance in terms of SER and SE.
17

Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

Afify, Laila H. 12 1900 (has links)
The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored MIMO schemes, describe the relation between the diverse network parameters and configurations, and study the impact of temporal interference correlation on the performance of large-scale networks. Finally, we investigate some interference management techniques by exploiting the proposed framework. The proposed framework is compared to the exact analysis as well as intensive Monte Carlo simulations to demonstrate the model accuracy. The developed work casts a thorough inclusive study that is beneficial to deepen the understanding of the stochastic deployment of the next-generation large-scale wireless networks and predict their performance.
18

Expectation-Maximization Optical Tomosynthetic Volume Imaging

Hanna, Philip M. 23 June 2008 (has links)
No description available.
19

PERFORMANCE TRADE-OFFS WHEN IMPLEMENTING TURBO PRODUCT CODE FORWARD ERROR CORRECTION FOR AIRBORNE TELEMETRY

Temple, Kip 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Hardware implementing forward error correction (FEC) is currently available for utilization by the airborne telemetry system designer. This paper will discuss the potential benefits along with drawbacks when using this technology. Laboratory testing is supplemented with real-world flight testing. Performance results comparing FEC and non-FEC systems are presented for both IRIG-106 Pulse Code Modulation/Frequency Modulation, PCM/FM, (or Continuous Phase Frequency Shift Keying, CPFSK, with filtering, or ARTM Tier 0) and Shaped Offset Quadrature Phase Shift Keying, Telemetry Group version (SOQPSK-TG or ARTM Tier I) waveforms.
20

Performance Evaluation of Low Density Parity Check Forward Error Correction in an Aeronautical Flight Environment

Temple, Kip 10 1900 (has links)
ITC/USA 2014 Conference Proceedings / The Fiftieth Annual International Telemetering Conference and Technical Exhibition / October 20-23, 2014 / Town and Country Resort & Convention Center, San Diego, CA / In some flight test scenarios the telemetry link is noise limited at long slant ranges or during signal fade events caused by antenna pattern nulls. In these situations, a mitigation technique such as forward error correction (FEC) can add several decibels to the link margin. The particular FEC code discussed in this paper is a variant of a low-density parity check (LDPC) code and is coupled with SOQPSK modulation in the hardware tested. This paper will briefly cover lab testing of the flight-ready hardware then present flight test results comparing a baseline uncoded telemetry link with a LDPC-coded telemetry link. This is the first known test dedicated to this specific FEC code in a real-world test environment with flight profile tailored to assess the viability of an LDPC-coded telemetry link.

Page generated in 0.2989 seconds