Spelling suggestions: "subject:"[een] EULER- LAGRANGE EQUATION"" "subject:"[enn] EULER- LAGRANGE EQUATION""
1 |
Discrete Fractional Calculus and Its Applications to Tumor GrowthSengul, Sevgi 01 May 2010 (has links)
Almost every theory of mathematics has its discrete counterpart that makes it conceptually easier to understand and practically easier to use in the modeling process of real world problems. For instance, one can take the "difference" of any function, from 1st order up to the n-th order with discrete calculus. However, it is also possible to extend this theory by means of discrete fractional calculus and make n- any real number such that the ½-th order difference is well defined. This thesis is comprised of five chapters that demonstrate some basic definitions and properties of discrete fractional calculus while developing the simplest discrete fractional variational theory. Some applications of the theory to tumor growth are also studied. The first chapter is a brief introduction to discrete fractional calculus that presents some important mathematical functions widely used in the theory. The second chapter shows the main fractional difference and sum operators as well as their important properties. In the third chapter, a new proof for Leibniz formula is given and summation by parts for discrete fractional calculus is stated and proved. The simplest variational problem in discrete calculus and the related Euler-Lagrange equation are developed in the fourth chapter. In the fifth chapter, the fractional Gompertz difference equation is introduced. First, the existence and uniqueness of the solution is shown and then the equation is solved by the method of successive approximation. Finally, applications of the theory to tumor and bacterial growth are presented.
|
2 |
Kontaktprobleme in der nichtlinearen ElastizitätstheorieHabeck, Daniel 29 July 2008 (has links) (PDF)
Es werden Kontaktprobleme im Rahmen der nichtlinearen Elastizitätstheorie mit Mitteln der Variationsrechnung behandelt. Dabei liegt das Hauptaugenmerk auf der Untersuchung des Selbstkontakts eines nichtlinear elastischen Körpers. Unter Verwendung einer geeigneten Lagrangeschen Multiplikatorenregel wird eine notwendige Bedingung für Minimierer hergeleitet. Weiterhin werden Ergebnisse für den Kontakt zweier elastischer Körper formuliert.
|
3 |
Kontaktprobleme in der nichtlinearen ElastizitätstheorieHabeck, Daniel 15 April 2008 (has links)
Es werden Kontaktprobleme im Rahmen der nichtlinearen Elastizitätstheorie mit Mitteln der Variationsrechnung behandelt. Dabei liegt das Hauptaugenmerk auf der Untersuchung des Selbstkontakts eines nichtlinear elastischen Körpers. Unter Verwendung einer geeigneten Lagrangeschen Multiplikatorenregel wird eine notwendige Bedingung für Minimierer hergeleitet. Weiterhin werden Ergebnisse für den Kontakt zweier elastischer Körper formuliert.
|
4 |
[en] DESTRUCTION OF INVARIANT GRAPHS BY Cˆ{1,\BETA} PERTURBATIONS / [pt] DESTRUIÇÃO DE GRÁFICOS INVARIANTES POR PERTURBAÇÕES Cˆ{1,\BETA}23 December 2021 (has links)
[pt] Segundo a teoria desenvolvida por Kolmogorov, Arnold e Moser na
década de sessenta, a grande maioria dos toros invariantes persistem após
uma perturbação C3 de um Hamiltoniano integrável. Uma pergunta natural é se perturbações em topologias Ck, para k < 3, ainda preservam tais toros. Bangert mostrou que a situação é a oposta na topologia C1 : arbitrariamente próximo de uma métrica Riemanniana plana no toro existem métricas sem nenhum toro invariante. Ruggiero estendeu esses resultados para Lagrangeanos mecânicos no toro e mostrou que, no caso de métricas Riemannianas, esse fenômeno é C1 genérico. Neste trabalho, mostramos que, dado ǫ > 0, E 2 R e um Hamiltoniano de Tonelli reversível H : TT2 -> R, existe β E (0, 1) e uma ǫ perturbação H0 de H tal que H0 não possui gráficos contínuos invariantes. Para tal, construimos explicitamente uma métrica Finsler, sem nenhum campo contínuo de minimizantes, através de um estudo analítico do operador de Jacobi. / [en] According to the theory developed by Kolmogorov, Arnold and Moser in the sixties, the majority of invariant tori persists under a C3 perturbation of a integrable Hamiltonian. A natural question is if a perturbation in the Ck topology, k < 3, still preserves such tori. Bangert showed that, in the C1 topology, what happens is the opposite: there are metrics with no invariant torus arbitrarily close to any given Riemannian metric. Ruggiero extended these results to mechanical Lagrangians in the torus and showed that for Riemannian metrics this phenomenon is C1 generic. In this work, we show that, given e > 0, e 2 R and a reversible Tonelli Hamiltonian H : TT2 -> R, there exists β E (0, 1) and an ǫ perturbation H0 of H in the C1,β topology such that H0 has no continuous invariant graphs. The result is achieved by explicitly exhibiting a Finsler metric, without any continuous field of minimizers, constructed after an analytic study of the Jacobi operator.
|
5 |
Reconstruction de pare-brisesDion-St-Germain, Antoine 09 1900 (has links)
Ce mémoire présente une méthode de reconstruction de la surface d’un pare-brise à
partir d’une image observée au travers de celui-ci. Cette image est déformée, car les rayons
lumineux traversant le pare-brise subissent deux réfractions : une de chaque côté du verre.
La déformation de l’image est dépendante de la forme du pare-brise, c’est donc cette donnée
qui est utilisée pour résoudre le problème. La première étape est la construction d’un champ
de vecteurs dans l’espace ambiant à partir des déviations des rayons lumineux passant par
le pare-brise. Elle repose sur la loi de la réfraction de Snell-Descartes et sur des hypothèses
simplificatrices au sujet de la courbure et de l’épaisseur du pare-brise. Le vecteur en un point
de ce champ correspond à une prédiction du vecteur normal à la surface, sous l’hypothèse
que celle-ci passe par le point en question. La deuxième étape est de trouver une surface
compatible avec le champ de vecteurs obtenu. Pour y arriver, on formule un problème de
minimisation où la donnée minimisée est la différence entre les vecteurs normaux à la surface
et ceux construits à partir des mesures du système d’inspection. Il en résulte une équation
d’Euler-Lagrange non linéaire à laquelle on impose des conditions de Dirichlet. Le graphe de
la solution à ce problème est alors la surface recherchée. La troisième étape est une méthode
de point fixe pour résoudre l’équation d’Euler-Lagrange. Elle donne une suite d’équations
de Poisson linéaires dont la limite des solutions respecte l’équation non linéaire étudiée. On
utilise le théorème du point fixe de Banach pour obtenir des conditions suffisantes d’existence
et d’unicité de la solution, qui sont aussi des conditions suffisantes pour lesquelles la méthode
de point fixe converge. / This Master’s thesis presents a method for the reconstruction of a windshield surface using
an image observed through it. This image is distorted because the light rays passing through
the windshield undergo two refractions : one on each side of the glass. The distortion depends
on the windshield shape and therefore this data is used to solve the problem. The first step is
the construction of a vector field in the ambient space, from the deviations of the light rays
passing through the windshield. This step relies on the Snell-Descartes refraction law and
on simplifying assumptions regarding the curvature and thickness of a windshield. A vector
at a point of this field corresponds to a prediction of the surface normal vector at this point,
under the hypothesis that this point lies on the surface. The second step is to find a surface
that is compatible with the obtained vector field. For this purpose, a minimisation problem
is formulated for which the minimized variable is the difference between the surface normal
vector and the one deduced from the system’s measurements. This leads to a nonlinear Euler-
Lagrange equation for which the Dirichlet boundary conditions are imposed. The graph of
the solution is the desired surface. The third step is a fixed-point method to solve the Euler-
Lagrange equation. At the center of this method is a sequence of linear Poisson equations,
each giving an approximating solution. It is shown that the limit of this sequence of solutions
respects the original nonlinear equation. The Banach fixed-point theorem is used to get
sufficient existence and uniqueness conditions, that are also sufficient conditions under which
the proposed fixed-point method converges.
|
6 |
Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculusBourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.
|
Page generated in 0.0548 seconds