Spelling suggestions: "subject:"[een] FLUTTER"" "subject:"[enn] FLUTTER""
201 |
Design, Construction And Preliminary Testin Of An Aeroservoelastic Test Apparatus To Be Used In Ankara Wind TunnelUnal, Sadullah Utku 01 February 2006 (has links) (PDF)
In this thesis, an aeroservoelastic test appratus is designed to investigate the flutter phenomena in a low speed wind tunnel environment. Flutter is an aeroelastic instability that may occur at control surfaces of aircrafts and missiles. Aerodynamic, elastic, and inertial forces are involved in flutter. A mathematical model using aeroelastic equations of motion is derived to investigate flutter and is used as a basis to design the test setup. Simulations using this mathematical model are performed and critical flutter velocities and frequencies are found. Stiffness characteristics of the test setup are determined using the results of these simulations. The test setup is a two degrees of freedom system, with motions in pitch and plunge, and is controlled by a servomotor in the pitch degree of freedom. A NACA 0012 airfoil is used as a control surface in the test setup. Using this setup, the flutter phenomena is generated in Ankara Wind Tunnel (AWT) and experiments are conducted to validate the results of the theoretical aeroelastic mathematical model calculations.
|
202 |
Contrôle passif non linéaire d’un profil aéroélastique, simulations et expérimentations / Nonlinear passive control of an aeroelastic airfoil, simulations and experimentationsAmar, Luc 19 May 2017 (has links)
L’objectif de cette thèse est de contrôler passivement une instabilité dynamique appliquée au flottement d’un profil aéroélastique à l’aide de différents types d’Amortisseurs à Masse Accordés (AMA). Un profil 2D appelé Section Typique est utilisé tout au long de l’étude. En première partie, une étude comparative de trois modèles mathématiques d’interaction fluide/structure appliqués à la Section Typique (Theodorsen, LUVLM et UVLM) met en valeur les forces et faiblesses de chacun. Le banc d’essai aéroélastique en soufflerie, utilisé par la suite, est présenté puis identifié avec et sans vent (GVT). En deuxième partie, les calculs des vitesses critiques de Divergence, d’Inversion des Gouvernes et de Flottement sont automatisés avec le modèle Theodorsen afin de réaliser une étude paramétrique du banc d’essai et mettre en lumière les variables de conception les plus influentes. L’analyse modale présente différentes bifurcations liées au changement soudain du mode instable. Ensuite, le même algorithme est utilisé afin d’analyser la suppression du flottement à l’aide de trois géométries d’AMAs linéaires. La dernière partie présente l’étude expérimentale et numérique d’un AMA non linéaire de type Nonlinear Energy Sink (NES). La singularité de cette configuration est d’utiliser le volet en tant qu’amortisseur et ainsi, ne pas ajouter de masse (FSI-VA). En soufflerie, six comportements non linéaires sous-critiques (en deçà de la vitesse de flottement dans la configuration linéaire) sont observés, identifiés et analysés : cinq Cycles Limites d’Oscillations (LCO) et un battement non linéaire chaotique. / The aim of this thesis is to passively control a dynamic instability applied to an aeroelastic profile’s flutter using different types of Tuned Mass Dampers (TMD). A 2D profile called Typical Section is used throughout the study. In the first part, a comparative study of three mathematical models of fluid-structure interaction applied to the Typical Section (Theodorsen, LUVLM and UVLM) highlights the strengths and weaknesses of each code. The aeroelastic test bench, used subsequently, is presented and identified with and without wind (Ground Vibration Test, GVT). In the second part, critical velocities computations (Divergence, Control Surface Reversal and flutter) are automated while using the Theodorsen model in order to carry out the test bench parametrical study to highlight most influential variables. The modal analysis presents different bifurcations linked to the sudden change of the unstable mode. The last part presents the experimental and numerical studies of a nonlinear TMD called Nonlinear Energy Sink (NES). The uniqueness of this configuration consists in recycling flap’s vibrations as a flutter damper and thus, get a zero added mass. A nonlinear restoring force can be achieved by a highly nonlinear mechanism. The nonlinear structural behavior is derived analyticaly and is in good agreement with experimental torsion tests. In the wind tunnel, six subcritical nonlinear behaviors (below the flutter velocity in the linear configuration case) are observed, identified and then analyzed : five Limit Cycle Oscillations (LCO) and a chaotic nonlinear beating.
|
203 |
Um estudo do emprego de fios LMF na atenuação de fenômenos de resposta aeroelástica em asa flexível.SILVA NETO, Orlando Tomaz da. 30 April 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-04-30T18:14:28Z
No. of bitstreams: 1
ORLANDO TOMAZ DA SILVA NETO – DISSERTAÇÃO (PPGEM) 2016.pdf: 7124483 bytes, checksum: b1fb3855e470f87f0e7d5c3081fcf9f1 (MD5) / Made available in DSpace on 2018-04-30T18:14:28Z (GMT). No. of bitstreams: 1
ORLANDO TOMAZ DA SILVA NETO – DISSERTAÇÃO (PPGEM) 2016.pdf: 7124483 bytes, checksum: b1fb3855e470f87f0e7d5c3081fcf9f1 (MD5)
Previous issue date: 2016-12-16 / A busca por aumento no desempenho das aeronaves tem direcionado, entre outras coisas, ao aumento da razão de aspecto da asa e ao uso de materiais avançados; essas soluções tem levado ao aumento de flexibilidade, resultando em problemas aeroelásticos ‒ aeroelasticidade é a ciência que estuda os fenômenos provenientes das interações entre forças aerodinâmicas, elásticas e inerciais ‒. Nessa área, destaca-se o flutter, fenômenos aeroelásticos de estabilidade dinâmica. Dentro deste contexto, este trabalho tem por objetivo analisar o comportamento em flutter de uma asa flexível com alta razão de aspecto com atuadores passivos de Ligas com Memória de Forma (LMF) submetida a um escoamento subsônico. Para isso fez-se o projeto, construção e testes de um modelo aeroelástico para ser ensaiado em túnel de vento, o desenvolvimento desse protótipo contou com uma abordagem numérico-experimental; finalizados os testes do modelo, fez-se a seleção e caracterização termomecânica do atuador; por fim, realizou-se os teste no túnel de vento. Os resultados obtidos mostraram que para determinadas disposições dos atuadores na asa o comportamento aeroelástico sofreu um ganho de desempenho bastante significativo como, aumento na velocidade crítica de ocorrência de flutter de aproximadamente 28%, entretanto, para outro arranjo observou-se uma diminuição de 15% na velocidade crítica. Com a análise dos resultados foi possível concluir que deve ser realizado um estudo minucioso do comportamento dinâmico do sistema sob efeito dos atuadores; além disso do efeito de cada arranjo deles na estrutura, para que assim o efeito desejado seja alcançado. / The search for increase in the performance of the aircraft has directed, among other things, to the increase of the aspect ratio of the wing and to the use of advanced materials; These solutions led to an increase of flexibility, resulting in aeroelastic problems - aeroelasticity is the science that studies the phenomena arising from the interactions between aerodynamic, elastic and inertial forces. In this area, we highlight the flutter, dynamic stability aeroelastic phenomenon. In this context, this work aims to analyze the behavior of a flexible wing with high aspect ratio with passive actuators of Shape Memory Alloys (SMA) in flutter, submitted to a subsonic flow. For this, the design, construction and testing of an aeroelastic model was carried out to be tested in a wind tunnel, the development of this prototype counted on a numerical-experimental approach; After finished model tests, the thermomechanical selection and characterization of the actuator was done; Finally, the tests were carried out in the wind tunnel. The results showed that, for certain arrangements of the actuators in the wing, the aeroelastic behavior underwent a very significant performance gain as, an increase of approximately 28% in the critical rate of flutter occurrence. With the results analysis, it was possible to conclude that a detailed study of the dynamic behavior of the actuators and of the effect of each arrangement of them on the structure must be carried out so that the desired effect may be achieved.
|
204 |
Influência das vibrações do cabo na instabilidade aeroelástica de uma viga simples estaiada. / Influence of cable vibrations on the aero-elastic instability of a cable-stayed beam.Nelson Antonio Martins Peres 09 August 2005 (has links)
Esse trabalho consiste na determinação das velocidades críticas do vento e das amplitudes das vibrações numa estrutura composta por uma viga engastada suspensa por um estai (cabo), submetida aos efeitos de vento e chuva. Foi considerada a deformação no cabo devido ao carregamento do peso próprio e o acoplamento não-linear das vibrações do cabo e da viga. Três modos de vibração são de especial interesse, chamados de primeiro modo global (flexão da viga e vibração no cabo), primeiro modo local (vibração no cabo, com flexão na viga desprezável) e primeiro modo à torção. O modelo foi reduzido a três graus de liberdade. A modelagem dos carregamentos aerodinâmicos aplicados na viga foi feita segundo procedimentos tradicionais. O carregamento aerodinâmico aplicado ao cabo sob efeito de chuva e vento também foi levado em consideração. Para a redução do modelo matemático, os coeficientes de rigidez e de amortecimento equivalente são definidos e dependem parametricamente da velocidade do vento. Os termos não-lineares são devidos ao acoplamento das vibrações do cabo e da viga à flexão (no plano do cabo) e também aos efeitos aeroelásticos no cabo. Os seguintes regimes instáveis são avaliados: o efeito de galope (galloping) no cabo, o drapejamento (flutter) unimodal na torção e o drapejamento (flutter) do modo de flexão da viga em conjunto com vibrações transversais do cabo. / This paper is concerned with determining wind critical velocities and post-critical vibration amplitudes in a cable-stayed beam, under wind-rain condition. It is considered the cable sag due to the dead load plus the non-linear coupling between the vibration of both the cable and the beam. Three modes are of special interest, namely the first global mode (beam bending & cable vibration), the first local mode (cable vibration & negligible beam bending) and the first torsion mode. A reduced mathematical model, with three degrees of freedom, is also developed. With regard to the modelling of the aerodynamic loads applied to the beam, it can be performed after extension of classical guidelines. The aerodynamic loads applied to the cable under rain are also taken into account. For the reduced mathematical model, equivalent damping and stiffness coefficients will be defined, which depend parametrically on the wind velocity. Non-linear terms appear due to the coupling between the cable and the beam bending vibrations, and also to the aero-elastic non-linear effects on the cable. Different unstable regimes are surveyed such as the cable galloping, the unimodal flutter in torsion and the unimodal flutter with beam bending and cable vibrations coupled.
|
205 |
Investigação numérica de modelos de turbulência no escoamento do vento em pontes suspensas. / Turbulence models numerical investigation in wind flow on long-span suspension bridges.Leandro Malveira Ferreira Costa 19 October 2017 (has links)
Estudos sobre a instabilidade aeroelástica em estruturas de pontes suspensas têm adquirido relevante destaque no âmbito das pesquisas em engenharia do vento nos últimos anos, haja vista que as definições resultantes dessa análise apresentam informações essenciais ao projeto, cálculo e concepção desse tipo de estrutura. Considerando que os escoamentos ao redor de pontes suspensas apresentam características turbulentas, o conhecimento acerca desse fenômeno torna-se fundamental para a análise da interação vento-ponte, estabelecendo a turbulência como uma importante e complexa vertente dentro dessa pesquisa. Nesse contexto, o presente trabalho visa contribuir com o tema através da análise numérica da ação do vento na seção transversal do tabuleiro de pontes suspensas, verificando seu comportamento quando estiverem submetidas à ação dos esforços provenientes do vento na interação de um escoamento turbulento com o tabuleiro da ponte. No trabalho foi investigada a atuação dos esforços aerodinâmicos na estrutura da ponte, ensejando na obtenção dos coeficientes aerodinâmicos de arrasto, sustentação e momento. Também foi analisado o comportamento do tabuleiro para o surgimento das vibrações induzidas por vórtices, permitindo o cálculo da frequência de desprendimento de vórtices e determinação do número de Strouhal. No que tange aos esforços aeroelásticos para o estudo específico do drapejamento (flutter), foram avaliadas as amplitudes de deslocamentos torcionais para o cálculo e obtenção da velocidade crítica do vento que acarreta o fenômeno do flutter. Juntamente com as análises aerodinâmicas e aeroelásticas da seção transversal da ponte, diferentes modelos de turbulência foram aplicados nas simulações para se estabelecer uma análise comparativa entre os escoamentos. As simulações computacionais desenvolvidas e apresentadas neste trabalho foram realizadas com auxílio de um programa de CFD (Computational Fluid Dynamics). Os modelos de ponte utilizados no trabalho foram o da ponte suspensa Great Belt East, localizada na Dinamarca e da ponte estaiada Sunshine Skyway, localizada nos Estados Unidos. Para validação da técnica computacional, os resultados das simulações foram comparados com dados numéricos e experimentais disponíveis na literatura. / Researches about aeroelastic instability in long span suspension bridges have been consistently the focus in wind engineering field in recent years, therefore the definitions from that study present essential information to design and construction of this type of road structure. Considering that fluid flows around bridges show some turbulent features, the knowledge about turbulence become critical for this wind-bridge interaction analysis, establishing the turbulence modeling study as an important and complex part within that research. According to this context, the meaning of this research was to contribute with numerical analysis of wind effects on a suspension bridge deck, verifying its behavior when this model is subjected to the action of wind loads from a turbulent fluid flow. The bridge aerodynamic behaviour was investigated and aerodynamic coefficients of drag, lift and moment were calculated. Flow induced vibrations were also analyzed for the bridge deck model, allowing it to obtain the vortex shedding frequency and Strouhal number. With regard to aeroelasticity and focusing on flutter study, the amplitudes of torsional displacements were evaluated as well as the analysis of critical wind velocity that causes flutter instabilities. Along with aerodynamic and aeroelastic analysis of the bridge deck cross sectional, fluid flow features were studied and compared applying several turbulence models to simulations. The numerical approach developed and shown in this work was performed by CFD (Computational Fluid Dynamics) software. The bridge deck models used at this dissertation were the Great Belt East suspension bridge, located in Denmark and the Sunshine Skyway cable stayed bridge, located in USA. In order to validate the computational technique, simulation results from this research were compared with numerical and experimental test data available in papers and literature.
|
206 |
Experimental Study of Flow Past a Circular Cylinder with a Flexible Splitter PlateShukla, Sanjay Kumar January 2017 (has links) (PDF)
A circular cylinder is a geometrically simple bluff body that occurs in various practical applications. As with any bluff body, it exhibits large drag forces and a strong fluctuating lift force, both related to the strong shedding of vortices from the body, which is commonly referred to as the Karman Street. Rigid splitter plates in the wake of the cylinder are known to suppress shedding from the body, and thereby result in reduced drag and fluctuating lift forces, the latter being important to reduce flow-induced vibrations of the body. In the present work, the flow past a cylinder with a downstream flexible splitter plate/flap is studied, the length (L) and flexural rigidity (EI) of the flap being the main parameters besides the flow speed (U). Two flaps length to cylinder diameter ratios (L/D), namely, a short (L/D = 2) and a long (L/D = 5) flaps have been studied, the shorter one being smaller than the recirculation zone, while the larger is longer than the recirculation zone. In both these cases, the flexural rigidity (EI) and the flow speed are systematically varied. In all cases, the flaps motion are directly visualized, the lift and drag forces are measured with a force balance, and the wake velocity field is measured using PIV.
In both the long and short flaps cases, the flexural rigidity (EI) of the flexible flap has been varied over a large range of values, and it has been found that the results for flaps tip motion and forces collapse well when plotted with a non-dimensional bending stiffness (K∗), which is defined as K∗ = EI/(1/2ρU2L3). This collapse occurs across flexible flaps with different values of EI, as long as Re > 5000. The collapse is not found to be good for Re < 5000. This difference appears to be related to the large reduction in fluctuating lift for a bare cylinder in the Re range between approximately 1600 and 5000 discussed by Norberg[41].
In the long flap case, the existence of two types of periodic modes is found within the range of K∗ values from 5 × 10−6 to 1 × 10−1 studied. The first one corresponds to a local peak in amplitude at K∗ ≈ 1.5 × 10−3 that is referred to as mode I, and the second that occurs at low values of K∗ (K∗ < 3 × 10−5) that is referred to as mode II. The fluctuating lift is found to be minimum for the mode I oscillation. The mean drag is also found to reach a broad minimum that starts at K∗ corresponding to mode I and continues to be at the same low level of approximately 65% of the bare cylinder drag for all higher K∗ values, representing an approximately 35% decrease in mean drag of the cylinder. The wake measurements also show significant changes with K∗. The formation length (lf /D) obtained from the closure point of the mean separation bubble is found to continuously increase with K∗, reaching values of approximately 2.6 at mode I and thereafter only small increases are seen as K∗ is increased to large values corresponding to the rigid splitter plate case, consistent with the observed variations in the mean drag. The stream wise and cross-stream turbulent intensities and the Reynolds shear stress are all found to be strikingly lower in the mode I case compared to the bare cylinder case, and more importantly, these values are even lower than the rigid splitter plate case. This is consistent with the shedding of weaker vortices and with the minimum in fluctuating lift found in the mode I case. The results for this flap length show that the mode I flap oscillation, corresponding to K∗ ≈ 1.5 × 10−3, may be useful to reduce lift, drag, velocity fluctuations in the wake and the strength of the shed vortices. In particular, the wake fluctuations corresponding to this mode are found to be significantly lower than the rigid splitter plate case.
In the short flap case (L/D = 2), it is found that there exists a richer set of flapping modes compared to the long flap, with these modes being dependent on K∗. At low K∗ values, the flap exhibits large amplitude symmetric flap motion that is referred to as mode A, while clearly asymmetric flaps motion are seen at higher K∗ values corresponding to modes B and C. Mode B corresponds to asymmetric large amplitude flapping motion, while mode C is also asymmetric with the flap clearly deflected off to one side, but
having small oscillation amplitudes. At even higher K∗ values, corresponding to mode D, symmetric flaps motion are again seen with the amplitudes being smaller than in mode A. Apart from the flap tip amplitude, the non-dimensional frequency of flap tip motion also changes as the flap changes modes. In this case, there is a minimum in the fluctuating lift corresponding to mode B and C oscillation. The mean drag is found to reach a minimum again corresponding to mode C, which corresponds to an approximately 35% decrease in mean drag of the cylinder. In this case, there is a large increase in fluctuating lift (approximately 150% of the bare cylinder case) at higher values of K∗ that appears to correspond to a “resonant” condition between the structural natural frequency of the flexible splitter plate/flap and the wake shedding frequency of the bare cylinder. The wake measurements show that the formation length (lf /D) is the largest for mode C (deflected flap state), which is consistent with the observed minimum in mean drag observed for this mode. The stream wise and cross-stream turbulent intensities and the Reynolds shear stress are all found to be strikingly lower in the mode C case compared to the bare cylinder case, with the values for the Reynolds shear stress being lower than the rigid splitter plate case. This is again consistent with the minimum in fluctuating lift found in the mode C case. The results for this flap length show that the mode C flap oscillation, corresponding to K∗ ≈ 5 × 10−2 that correspond to a deflected flap state with very small oscillation may be useful to reduce lift, drag, velocity fluctuations in the wake and the strength of the shed vortices.
The results from the present study show that the flexible flap/splitter plate down-stream of the cylinder exhibits a variety of mode shapes depending on the effective bending rigidity of the flap K∗ for both the long and short flaps cases. The forces and the wake are also found to be strongly dependent on this parameter K∗ with the wake fluctuations, lift fluctuations and the drag being very effectively suppressed at an intermediate value of K∗ that is found to be dependent on the plate/flap length.
|
207 |
A NUMERICAL FLUTTER PREDICTOR FOR 3D AIRFOILS USING THE ONERA DYNAMIC STALL MODELBoersma, Pieter 25 October 2018 (has links)
To be able to harness more power from the wind, wind turbine blades are getting longer. As they get longer, they get more flexible. This creates issues that have until recently not been of concern. Long flexible wind turbine blades can lose their stability to flow induced instabilities such as coupled-mode flutter. This type of flutter occurs when increasing wind speed causes a coupling of a bending and a torsional mode, which create limit cycle oscillations that can lead to blade failure. To be able to make the design of larger blades possible, it is important to be able to predict the critical flutter and post critical flutter behaviors of wind turbine blades.
Most numerical research concerning coupled-mode wind turbine is focused on predicting the critical flutter point, and less focused on the post critical behavior. This is because of the mathematical complexities associated with the coupled, nonlinear wind turbine blade systems. Here, a numerical model is presented that predicts the critical flutter velocity and post critical flutter behavior for 3D airfoils with third order structural nonlinearities. The numerical model can account for the attached flow and separated flow region by using the ONERA dynamic stall model. By retaining higher-order structural nonlinearities, lateral and torsional displacements can be predicted, which makes it possible to use this model in the future to control wind turbine blade flutter. Furthermore, by using a dynamic stall model to simulate the flow, the solver is able to predict accurate limit cycle oscillations when the effective angle of attack is larger than the stall angle.
The coupled, nonlinear equations of motion are two coupled nonlinear PDEs and are determined using Hamilton’s principle. In order to solve the equations of motion, they are discretized using the Galerkin technique into a set of ODEs. The motion of the airfoil is used as an input to ONERA. The airfoil is sectioned with the lateral position and angle of attack known as well as the velocity and acceleration of the section at an instance of time. This information is used by ONERA to calculate lift and moment coefficients for each section which are then used to calculate the total lift and moment forces of the airfoil. Then, a Fortran code solves the system by using Houbolt’s finite difference method.
A theoretical NACA 0012 airfoil has been designed to define the parameters used by the equations of motion. Third bending and first torsional coupling occurs after the critical flutter point and dynamic lift and moment coefficients were observed. Dynamic stall was also observed at wind velocities farther away from the bifurcation point. Bifurcation diagrams, time histories, and phase planes have been created that represent the flutter behavior.
|
208 |
Aeroelastická analýza konstrukce letounu VUT 081 Kondor / VUT 081 Kondor aircraft aeroelastic analysisTalanda, Tomáš January 2014 (has links)
This master thesis deals with VUT~081~Kondor aircraft flutter analysis. This aircraft is being designed at the Institute of Aerospace Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The thesis contains detailed aircraft description, natural frequency and normal modes computation as well as aircraft structure flutter analysis and critical flutter velocity determination. Some structure improvement recommendations have been given in order to increase the critical flutter velocity and to fulfil the CS-VLA regulation requirements.
|
209 |
Evaluating alternatives to native development for handheld computersClaesson, Alfred January 2020 (has links)
Selecting a suitable mobile application development framework is challenging. Multiple frameworks exist with respective strengths and weaknesses, and evaluations comparing the different frameworks are lacking. Each company and developer has its own demands and preferences, thereof, no single development framework poses as a suitable solution for every situation. This study is aimed at contributing to the current foundation of research by examining Android application development for handheld computers. By selecting promising cross-platform frameworks and comparing these with the native development framework for Android this study shows that cross-platform development frameworks can provide the tools required to build sufficient applications for handheld computers. This is particularly relevant for the developers affected by the termination of support for Windows Mobile. The findings of this study show that the frameworks Flutter and Xamarin both pose as promising alternatives to native development.
|
210 |
The dynamics of two-dimensional cantilevered flexible plates in axial flow and a new energy-harvesting concept /Tang, Liaosha, 1970- January 2007 (has links)
No description available.
|
Page generated in 0.0396 seconds