Spelling suggestions: "subject:"[een] GALLIUM NITRIDE"" "subject:"[enn] GALLIUM NITRIDE""
191 |
Optimisation, fabrication et caractérisation d’un capteur de gaz à base d’hétérostructure AlGaN/GaN HEMT pour des applications automobiles / Optimization, fabrication and characterization of a gas sensor based HEMTs AlGaN/GaN heterostructure for automotive applicationsHalfaya, Yacine 22 November 2016 (has links)
Le travail de la thèse s’articule sur le développement d’un nouveau type de capteurs de gaz à base des matériaux semi-conducteurs III-Nitrure (Les nitrures de gallium). Ces matériaux présentent de nombreux avantages qui pourraient être utilisées pour concevoir des capteurs NOx sensibles et sélectifs pour le contrôle des pollutions émises par la ligne d’échappement Diesel. Afin de limiter et déduire les gaz polluants émis par les moteurs à explosion en générale et les moteurs Diesel en particuliers (NO, NO2, NH3, CO, …), différentes normes européennes ont été établies. Pour respecter ces normes, plusieurs modifications sur les moteurs et les lignes d’échappement des véhicules ont été effectuées (filtres à particules, catalyseurs, capteurs NOx, …). Les capteurs NOx utilisés actuellement sont à base d’électrolyte solide. Ils sont basés dans leur fonctionnement sur la mesure de la concentration d’oxygène présente dans le gaz d’échappement qui permet de son tour l’estimation de la concentration totale des gaz NOx (mesure indirecte). Ces capteurs ne détectent pas le NH3 à la sortie de la ligne d’échappement, et ne donnent pas une information précise sur le rapport entre NO et NO2 (manque de sélectivité) qui est un facteur important pour le bon fonctionnement de catalyseur sélectif SCR (amélioration de rendement) ; d’où la nécessité d’un capteur de gaz plus performant et en particulier sélectif afin d’améliorer les systèmes de contrôle, de post-traitement et de diagnostic. Notre approche consiste à utiliser un transistor HEMT (High Electron Mobility Transistor) à gaz bidimensionnel d’électrons à base de nitrure de Gallium avec l’association d’une couche fonctionnelle à la place de la grille. L’interaction des molécules de gaz avec cette couche fonctionnelle donne une signature (variation de signal de sortie) spécifique pour chaque type de gaz qui aide à l’amélioration de la sélectivité. Le projet contient deux parties : l’optimisation de la structure choisie et l’optimisation de la couche fonctionnelle afin d’obtenir une détection sélective entre les différents gaz polluants. Cette technologie est intéressante pour développer des capteurs de gaz grâce aux possibilités de détecter des faibles variations de tensions et aux possibilités de fonctionnement dans des environnements sévères. La thèse de doctorat s’inscrit dans le cadre de l’OpenLab materials and processes en collaboration entre le laboratoire Georgia-Tech lorraine et l’entreprise Peugeot-Citroën PSA / The work of the thesis focuses on the development of a new type of gas sensors based III-Nitride semiconductor materials (gallium nitrides). These materials have many advantages that could be used to develop sensitive and selective NOx sensors for the control of pollution emitted by diesel exhaust line. To limit the polluting gases emitted by internal combustion engines in general and diesel in particular (NO, NO2, NH3, CO, ...), different European standards have been established. To meet these standards, anti-pollution systems (consisting of particle filters, catalysts, NOx sensors, ... etc) are used. NOx sensors currently used in automobiles are based on a solid electrolyte. Their operation is based on the measurement of the oxygen concentration. This enables an estimate of the total concentration of NOx gas (indirect measurement) after filtering NOx from O2 and decomposing NOx into O2. These sensors do not detect NH3 at the outlet of the exhaust line, and do not give accurate information on the relationship between NO and NO2 (lack of selectivity) which is important factor for an optimal functioning of selective catalyst (SCR performance improvement). Hence there exists a need for a more efficient and selective in particular gas sensor to improve the control systems, post-treatment and diagnosis. Our approach is to use a HEMT (High Electron Mobility Transistor) transistor based on gallium nitride with a combination of a functional layer instead of the gate. The interaction of the gas molecules with the functional layer gives a signature (output signal variation) specific for each type of gas that helps to improve the selectivity. The project contains two parts: the optimization of the chosen structure and the optimization of the functional layer in order to achieve selective detection between various gaseous pollutants. This technology is interesting for development of gas sensors through the possibility of detection low voltage variations and the possibility of operating in harsh environments. The thesis is part of OpenLab "Materials and Processes" in a collaboration between Georgia Tech-CNRS laboratory and the PSA Peugeot-Citroen Group
|
192 |
Etude des mécanismes de formation des contacts ohmiques pour des transistors de puissance sur Nitrure de Gallium / Study of the mechanisms involved in the formation of ohmic contacts on power electronics transistors based on Gallium nitrideBertrand, Dimitri 12 December 2016 (has links)
Cette thèse s’inscrit dans le cadre du développement d’une filière de transistors de puissance à base de nitrure de Gallium au CEA-LETI. Ces transistors, en particulier les HEMT utilisant l’hétérostructure AlGaN/GaN, présentent des propriétés très utiles pour les applications de puissance. L’essor de cette technologie passe notamment par le développement de contacts ohmiques peu résistifs. Cette thèse a pour objectif d’approfondir la compréhension des mécanismes de formation du contact ohmique sur une structure AlGaN/GaN. Dans un premier temps, une étude thermodynamique sur une dizaine de métaux de transition utilisables comme base de l’empilement métallique du contact a été menée, ce qui a permis de retenir une métallisation Ti/Al. Puis, les différentes réactions physico-chimiques de cet empilement avec des substrats nitrurés ont été étudiées en faisant varier la composition et les températures de recuit de formation du contact ohmique. Enfin, plusieurs études sur structure AlGaN/GaN couplant caractérisations électriques et physico-chimiques ont permis d’identifier des paramètres décisifs pour la réalisation d’un contact ohmique, peu résistif et nécessitant une faible température de recuit. / This PhD is part of the development of Gallium nitride based power transistors at the CEA-LETI. These transistors, especially those based on AlGaN/GaN heterostructure, are very promising for power electronics applications. The goal of this PhD is to increase the knowledge of the mechanisms responsible for the ohmic contact formation on a AlGaN/GaN structure. First, a thermodynamic study of several transition metals has been performed, leading us to select Ti/Al metallization. Then, the multiple physico-chemical reactions of this stack with nitride substrates have been studied depending on the stack composition and the annealing temperature. Finally, several studies on AlGaN/GaN structure coupling both physico-chemical and electrical characterizations reveal different decisive parameters for the formation of an ohmic contact with a low-resistance and a low annealing temperature.
|
193 |
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart GridJanuary 2017 (has links)
abstract: In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, µ synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using H infinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
194 |
Small Form Factor Hybrid CMOS/GaN Buck Converters for 10W Point of Load ApplicationsJanuary 2018 (has links)
abstract: Point of Load (PoL) converters are important components to the power distribution system in computer power supplies as well as automotive, space, nuclear, and medical electronics. These converters often require high output current capability, low form factor, and high conversion ratios (step-down) without sacrificing converter efficiency. This work presents hybrid silicon/gallium nitride (CMOS/GaN) power converter architectures as a solution for high-current, small form-factor PoL converters. The presented topologies use discrete GaN power devices and CMOS integrated drivers and controller loop. The presented power converters operate in the tens of MHz range to reduce the form factor by reducing the size of the off-chip passive inductor and capacitor. Higher conversion ratio is achieved through a fast control loop and the use of GaN power devices that exhibit low parasitic gate capacitance and minimize pulse swallowing.
This work compares three discrete buck power converter architectures: single-stage, multi-phase with 2 phases, and stacked-interleaved, using components-off-the-shelf (COTS). Each of the implemented power converters achieves over 80% peak efficiency with switching speeds up-to 10MHz for high conversion ratio from 24V input to 5V output and maximum load current of 10A. The performance of the three architectures is compared in open loop and closed loop configurations with respect to efficiency, output voltage ripple, and power stage form factor.
Additionally, this work presents an integrated CMOS gate driver solution in CMOS 0.35um technology. The CMOS integrated circuit (IC) includes the gate driver and the closed loop controller for directly driving a single-stage GaN architecture. The designed IC efficiently drives the GaN devices up to 20MHz switching speeds. The presented controller technique uses voltage mode control with an innovative cascode driver architecture to allow a 3.3V CMOS devices to effectively drive GaN devices that require 5V gate signal swing. Furthermore, the designed power converter is expected to operate under 400MRad of total dose, thus enabling its use in high-radiation environments for the large hadron collider at CERN and nuclear facilities. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2018
|
195 |
Black-box optimization of simulated light extraction efficiency from quantum dots in pyramidal gallium nitride structuresOlofsson, Karl-Johan January 2019 (has links)
Microsized hexagonal gallium nitride pyramids show promise as next generation Light Emitting Diodes (LEDs) due to certain quantum properties within the pyramids. One metric for evaluating the efficiency of a LED device is by studying its Light Extraction Efficiency (LEE). To calculate the LEE for different pyramid designs, simulations can be performed using the FDTD method. Maximizing the LEE is treated as a black-box optimization problem with an interpolation method that utilizes radial basis functions. A simple heuristic is implemented and tested for various pyramid parameters. The LEE is shown to be highly dependent on the pyramid size, the source position and the polarization. Under certain circumstances, a LEE over 17% is found above the pyramid. The results are however in some situations very sensitive to the simulation parameters, leading to results not converging properly. Establishing convergence for all simulation evaluations must be done with further care. The results imply a high LEE for the pyramids is possible, which motivates the need for further research.
|
196 |
Développement de capteurs THz utilisant l'hétérostructure AIGaN/GaN / Design of THz detectors using the AlGaN/GaN heterostructureSpisser, Hélène 14 February 2017 (has links)
Le domaine du spectre électromagnétique correspondant aux fréquences térahertz est encore peu exploité, pourtant, les applications nécessitant la génération, l’amplification ou la détection d’un signal térahertz sont nombreuses et intéressantes. Dans ce travail, nous nous intéressons tout particulièrement aux détecteurs plasmoniques, qui constituent une alternative prometteuse à la montée en fréquence des capteurs électroniques et l’utilisation de capteurs thermiques pour les photons de faible énergie. Les capteurs plasmoniques fonctionnent grâce au couplage entre le photon térahertz et un plasmon au sein d’un gaz d’électrons bidimensionnel (2DEG). Le plasmon-polariton est ensuite transformé en un signal continu et détectable. Nous utilisons pour cela le 2DEG présent dans l’hétérostructure AlGaN/GaN. Le couplage entre le photon et le plasmon est réalisé par un réseau métallique déposé sur la structure semi-conductrice. Tout d’abord, l’étude du couplage photon/plasmon-polariton par des simulations électromagnétiques nous a permis de connaître les fréquences de résonance des plasmons-polaritons en fonction des dimensions du réseau. Le motif de réseau composé de deux bandes de métal de largeurs différentes a été plus particulièrement étudié. Ce motif permettant aux détecteurs d’atteindre une très haute sensibilité [Coquillat et al., 2010] et n’avait pas encore été étudié du point de vue de son efficacité de couplage. Des détecteurs, dimensionnés pour notre montage de test à 0,65 THz, ont ensuite été fabriqués puis mesurés avec un réseau non-polarisé, à température ambiante et refroidis à l’azote. La correspondance entre la variation de la sensibilité en fonction de la fréquence et les spectres d’absorption mesurés au spectromètre infrarouge à transformée de Fourier (FTIR) montre l’importance de l’étape de couplage dans le processus de détection. Contrôler la densité électronique dans le 2DEG permet de modifier la fréquence de résonance des plasmons-polaritons et d’augmenter la sensibilité des détecteurs. Nous avons mené des développements technologiques de manière à pouvoir contrôler la densité électronique du 2DEG en appliquant une tension sur le réseau. Cette étape constitue un défi technologique compte tenu de la surface très étendue des réseaux (plusieurs mm²). Nous avons finalement fabriqué des détecteurs pour lesquels la fréquence de résonance de couplage peut être contrôlée grâce à la tension appliquée sur le réseau. / The THz-domain of the electromagnetic spectrum is not frequently used, even if the generation, amplification and detection of THz-waves would open a wide range of interesting applications. In this work, we focus on plasmonic detectors as a promising alternative to the frequency-raising of high-frequency electronic detectors and to the use of thermic detectors for low-energy photons. The coupling between a THz-photon and a plasmon in a 2D electron gas (2DEG) gives birth to a plasmon-polariton, which is then turned into a continuous, measurable signal and explains the operation of the plasmonic detector. In this work, we use the 2DEG in the semiconductive heterostructure AlGaN/GaN. A metallic grating deposited on-top of the semiconductor realises the coupling between photon and plasmon. First, we used electromagnetic simulations to study the coupling between photon and plasmon and calculate the resonant coupling frequency with respect to the grating dimensions. We studied specifically a grating pattern made of two metal stripes of different widths. This pattern gives the highest sensitivity to the detectors [Coquillat et al., 2010] and had not been studied before in term of coupling efficiency. In a second time, we fabricated detectors designed to match our 0.65 THz experimental setup. These detectors have been measured at 77 K and at room-temperature. No voltage has been applied on the grating. We saw that the sensitivity variations with respect to the incident frequency correspond to the absorption spectra measured by Fourier Transform spectrometer (FTIR), what show the importance of the coupling for the detection. Monitoring the electronic density in the 2DEG is a way to monitor the plasmon-polariton resonant frequency and the detector sensitivity. We led technological development to monitor the electronic density in the 2DEG by applying a voltage on the grating. This has been a technological challenge because of the wide grating area (a few mm²). Finally, we fabricated detectors for which it was possible to monitor the resonant absorption frequency using the grating voltage.
|
197 |
Nanoscale Electronic Properties in GaN Based Structures for Power Electronics Using Electron MicroscopyJanuary 2019 (has links)
abstract: The availability of bulk gallium nitride (GaN) substrates has generated great interest in the development of vertical GaN-on-GaN power devices. The vertical devices made of GaN have not been able to reach their true potential due to material growth related issues. Power devices typically have patterned p-n, and p-i junctions in lateral, and vertical direction relative to the substrate. Identifying the variations from the intended layer design is crucial for failure analysis of the devices. A most commonly used dopant profiling technique, secondary ion mass spectroscopy (SIMS), does not have the spatial resolution to identify the dopant distribution in patterned devices. The possibility of quantitative dopant profiling at a sub-micron scale for GaN in a scanning electron microscope (SEM) is discussed. The total electron yield in an SEM is shown to be a function of dopant concentration which can potentially be used for quantitative dopant profiling.
Etch-and-regrowth is a commonly employed strategy to generate the desired patterned p-n and p-i junctions. The devices involving etch-and-regrowth have poor performance characteristics like high leakage currents, and lower breakdown voltages. This is due to damage induced by the dry etching process, and the nature of the regrowth interface, which is important to understand in order to address the key issue of leakage currents in etched and regrown devices. Electron holography is used for electrostatic potential profiling across the regrowth interfaces to identify the charges introduced by the etching process. SIMS is used to identify the impurities introduced at the interfaces due to etch-and-regrowth process. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2019
|
198 |
[en] SYNTHESIS OF GALLIUM NITRIDE POWDER FROM GAS-SOLID REACTION USING CARBON AS REDUCING AGENT / [pt] SÍNTESE DE PÓS DE NITRETO DE GÁLIO POR REAÇÃO GÁS-SÓLIDO UTILIZANDO CARBONO COMO AGENTE REDUTOR13 October 2003 (has links)
[pt] O nitreto de gálio (GaN) é um dos mais interessantes e
promissores materiais para aplicação em dispositivos óptico-
eletrônicos. GaN pode ser usado para a fabricação de diodos
e lasers azuis. O desenvolvimento deste tipo de material
está relacionado com três campos principais: 1) deposição
de camadas de GaN cristalino; 2) produção de nano-
filamentos a partir de reações confinadas no interior
de nanotubos de carbono; 3) síntese de GaN em pó por
diferentes métodos químicos. Recentemente, novas técnicas
de deposição adotaram a sublimação de pós de GaN como fonte
de gálio para a produção de nanofilamentos de GaN, filmes
finos ou cristais. Estes métodos de sublimação mostram a
necessidade do emprego de pós de GaN. No presente trabalho,
é apresentada uma nova rota para a produção de pós de GaN a
partir da reação gás-sólido entre Ga2O3 e NH3(g)
utilizando o carbono como agente redutor no interior de um
novo tipo de reator, disposto verticalmente. A partir desta
rota obteve-se pós de GaN com conversões aproximadamente de
100% e com estrutura cristalina hexagonal. A quantidade de
GaN obtida variou de acordo com os parâmetros experimentais
adotados. Através de uma análise estatística foi possível
determinar a influência da temperatura, razão molar de
carbono/Ga2O3 e do tempo experimental sobre a taxa de
produção de GaN. / [en] It is well known that gallium nitride (GaN) is one of the
most interesting and promising materials for optoelectronic
devices. GaN can be used for manufacturing blue light-
emitting diodes and lasers. Development of this material is
concerned with three main areas 1) deposition of GaN
crystalline layers onto different substrates; 2)
manufacturing of GaN nanorods from chemical reactions in
the confined spaces provided by carbon nanotubes; 3)
synthesis of GaN powders by different chemical methods.
Recently, new deposition techniques have adopted
sublimation of GaN powders as gallium source to produce GaN
nanorods, thin films or bulk crystals. These sublimation
methods rely on the supply of GaN powders. This thesis
presents a new route to produce GaN powder from gas-solid
chemical reaction between Ga2O3 and NH3 using carbon as
reducing agent in a new reactor design. The GaN powder
obtained from this route possesses a hexagonal crystal
structure and was found to correspond to almost 100%
conversion of Ga2O3. The amount of GaN present in the
powders varied with experimental parameters. A statistical
analysis showed the influence of temperature, carbon/Ga2O3
ratio and experimental time on the production of GaN powder.
|
199 |
Next Generation Integrated Behavioral and Physics-based Modeling of Wide Bandgap Semiconductor Devices for Power ElectronicsHontz, Michael Robert 28 August 2019 (has links)
No description available.
|
200 |
Few cycle pulse laser induced damage studies of gallium oxide and gallium nitrideHarris, Brandon Eric January 2019 (has links)
No description available.
|
Page generated in 0.0439 seconds