• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 16
  • 13
  • 12
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Thermal Aging Effects on IN718 Plus Nickel-base Superalloy

Chaswal, Vibhor 20 April 2011 (has links)
No description available.
12

High-resolution microstructural and microanalysis studies to better understand the thermodynamics and diffusion kinetics in an advanced Ni-based superalloy RR1000

Chen, Yiqiang January 2015 (has links)
The commercial polycrystalline superalloy RR1000 developed for turbine disc applications contains a large number of alloying elements. This complex alloy chemistry is required in order to produce appropriate microstructures and the required mechanical properties, such that the most important strengthener γʹ displays complex alloy chemistry. The broad aim of this project is to develop an approach to measuring the composition of γʹ precipitates at a broad range of length scales from nanometres to hundreds of nanometres, and subsequently develop a better understanding of the role of thermodynamics and diffusion kinetics on γʹ phase separation and precipitate growth. A solution of the absorption-corrected EDX spectroscopy to spherical particles was developed in our work, therefore enabling the quantitative analysis of precipitates' composition using an absorption-corrected Cliff-Lorimer approach. By performing this quantification, size-dependent precipitate compositional variations were obtained. Examination of this quantitative approach was compared to thermodynamic calculations of primary γ' precipitates possessing equilibrium compositions. Given the development of semi-quantitative compositional measurements for spherical γʹ precipitates and that cooling is one of the most common and critical regimes in physical metallurgy of Ni-based superalloys, this approach was then applied to study the local compositional variations that are induced in γ' precipitates when the alloy RR1000 undergoes different cooling rates. These measured compositions have been compared to detailed thermodynamic calculations and provide new experimental evidence of the importance of the dominant role of aluminium antisite diffusion in determining the low-temperature growth kinetics of fine-scale γ' precipitates. We have applied a similar analysis approach to study the compositional variations of γʹ cores within the class of secondary precipitates upon cyclic coarsening and reversal coarsening. It was shown that supersaturated Co in secondary γʹ exhibits an overall trend towards the equilibrium but Co content can significantly increase as γʹ coarsens. It was demonstrated that the limited elemental diffusivity in γ and γʹ compared to the observed coarsening rate in the coarsening regime results in the long-lasting Co supersaturation in γʹ and builds up elemental enhancements or depletions. These inhomogeneous elemental distributions produce compressive elastic constraints on large-scale secondary γʹ, therefore inducing morphological instability of these γʹ and causing the reversal coarsening. These results enable us to better understand the role that both thermodynamics and limited diffusion kinetics plays in controlling the complex microstructures of γ' precipitates.
13

Effet des paramètres de traitements thermiques sur la microstructure et les propriétés mécaniques d'un superalliage base nickel élaboré par métallurgie des poudres

Dumont, Alice 17 December 2013 (has links) (PDF)
L'alliage N19 est un superalliage base nickel, élaboré par métallurgie des poudres, qui a été développé récemment en vue d'une application pour disques de turbine aéronautique. L'objectif de cette étude est d'optimiser la microstructure de cet alliage en agissant sur les paramètres de traitements thermiques pour améliorer les propriétés mécaniques de l'alliage. Une bonne compréhension des relations entre les paramètres de traitements thermiques et la microstructure, d'une part, et, des relations entre la microstructure et les propriétés mécaniques, d'autre part, est donc nécessaire. De nombreux traitements thermiques ont été appliqués à l'alliage N19 pour évaluer l'effet de la température de mise en solution, des conditions de refroidissement et de la température de revenu sur la taille de grains, et sur la taille et la distribution des précipités gamma prime. L'observation des microstructures en microscopie électronique à balayage et en transmission a permis d'évaluer l'effet des différentes étapes du traitement thermique sur les caractéristiques microstructurales de l'alliage. L'effet de ces modifications microstructurales sur la vitesse de propagation de fissure en fatigue-fluage à 650°C a été étudié. Les résultats de ces essais de propagation de fissure en fatigue-fluage ont été analysés à l'aide d'essais de comportement en fatigue-relaxation. Une synthèse des différentes propriétés mécaniques de l'alliage en fonction des paramètres de traitements thermiques et des caractéristiques microstructurales a été proposée.
14

On the Path-Dependent Microstructure Evolution of an Advanced Powder Metallurgy Nickel-base Superalloy During Heat Treatment

Krutz, Nicholas J. January 2020 (has links)
No description available.
15

Microstructure-Sensitive Models for Predicting Surface Residual Stress Redistribution in P/M Nickel-Base Superalloys

Burba, Micheal Eric 24 May 2017 (has links)
No description available.
16

Characterization and Modeling of Grain Coarsening in Powder Metallurgical Nickel-Based Superalloys

Payton, Eric John 24 September 2009 (has links)
No description available.
17

Determination of the structure of y-alumina using empirical and first principle calculations combined with supporting experiments

Paglia, Gianluca January 2004 (has links)
Aluminas have had some form of chemical and industrial use throughout history. For little over a century corundum (α-Al2O3) has been the most widely used and known of the aluminas. The emerging metastable aluminas, including the γ, δ, η, θ, κ, β, and χ polymorphs, have been growing in importance. In particular, γ-Al2O3 has received wide attention, with established use as a catalyst and catalyst support, and growing application in wear abrasives, structural composites, and as part of burner systems in miniature power supplies. It is also growing in importance as part of the feedstock for aluminium production in order to affect both the adsorption of hydrogen fluoride and the feedstock solubility in the electrolytic solution. However, much ambiguity surrounds the precise structure of γ-Al2O3. Without proper knowledge of the structure, understanding the properties, dynamics and applications will always be less than optimal. The aim of this research was to contribute towards settling this ambiguity. This work was achieved through extensive computer simulations of the structure, based on interatomic potentials with refinements of promising structures using density functional theory (DFT), and a wide range of supporting experiments. In addition to providing a more realistic representation of the structure, this research has also served to advance knowledge of the evolution of the structure with changing temperature and make new insights regarding the location of hydrogen in γ-Al2O3. / Both the molecular modelling and Rietveld refinements of neutron diffraction data showed that the traditional cubic spinel-based structure models, based on m Fd3 space group symmetry, do not accurately describe the defect structure of γ-Al2O3. A more accurate description of the structure was provided using supercells of the cubic and tetragonal unit cells with a significant number of cations on c symmetry positions. These c symmetry based structures exhibited diffraction patterns that were characteristic of γ-Al2O3. The first three chapters of this Thesis provide a review of the literature. Chapter One provides a general introduction, describing the uses and importance of the aluminas and the problems associated with determining the structure of γ-Al2O3. Chapter Two details the research that has been conducted on the structure of vi γ-Al2O3 historically. Chapter Three describes the major principles behind the computational methods employed in this research. In Chapter Four, the specific experimental and computational techniques used to investigate the structure of γ-Al2O3 are described. All preparation conditions and parameters used are provided. Chapter Five describes the methodology employed in computational and experimental research. The examination of the ~ 1.47 billion spinel-based structural possibilities of γ-Al2O3, described using supercells, and the selection of ~ 122,000 candidates for computer simulation, is detailed. This chapter also contains a case study of the structure of κ-Al2O3, used to investigate the applicability of applying interatomic potentials to solving complex structures, where many possibilities are involved, and to develop a systematic procedure of computational investigation that could be applied to γ-Al2O3. Chapters Six to Nine present and discuss the results from the experimental studies. / Preliminary heating trials, performed to determine the appropriate preparation conditions for obtaining a highly crystalline boehmite precursor and an appropriate calcination procedure for the systematic study of γ-Al2O3, were presented in Chapter Six. Chapter Seven details the investigation of the structure from a singletemperature case. Several known structural models were investigated, including the possibility of a dual-phase model and the inclusion of hydrogen in the structure. It was demonstrated that an accurate structural model cannot be achieved for γ-Al2O3 if the cations are restricted to spinel positions. It was also found that electron diffraction patterns, typical for γ-Al2O3, could be indexed according to the I41/amd space group, which is a maximal subgroup of m Fd3 . Two models were presented which describe the structure more accurately; Cubic-16c, which describes cubic γ-Al2O3 and Tetragonal-8c, which describes tetragonal γ-Al2O3. The latter model was found to be a better description for the γ-Al2O3 samples studied. Chapter Eight describes the evolution of the structure with changing calcination temperature. Tetragonal γ-Al2O3 was found to be present between 450 and 750 °C. The structure showed a reduction in the tetragonal distortion with increasing temperature but at no stage was cubic γ-Al2O3 obtained. Examination of the progress of cation migration indicates the reduction in the tetragonal nature is due to ordering within inter-skeletal oxygen layers of the unit cell, left over from the breakdown of the hydroxide layers of boehmite when the transformation to γ-Al2O3 occurred. Above 750 °C, δ-Al2O3 was not observed, but a new phase was identified and designated γ.-Al2O3. / The structure of this phase was determined to be a triple cell of γ-Al2O3 and is herein described using the 2 4m P space group. Chapter Nine investigates the presence of hydrogen in the structure of γ-Al2O3. It was concluded that γ-Al2O3 derived from highly crystalline boehmite has a relatively well ordered bulk crystalline structure which contains no interstitial hydrogen and that hydrogen-containing species are located at the surface and within amorphous regions, which are located in the vicinity of pores. Expectedly, the specific surface area was found to decrease with increasing calcination temperature. This trend occurred concurrently with an increase in the mean pore and crystallite size and a reduction in the amount of hydrogen-containing species within the structure. It was also demonstrated that γ-Al2O3 derived from highly crystalline boehmite has a significantly higher surface area than expected, attributed to the presence of nano-pores and closed porosity. The results from the computational study are presented and discussed in Chapter Ten. Optimisation of the spinel-based structural models showed that structures with some non-spinel site occupancy were more energetically favourable. However, none of the structural models exhibited a configuration close to those determined from the experimental studies. Nor did any of the theoretical structures yield a diffraction pattern that was characteristic of γ-Al2O3. This discrepancy between the simulated and real structures means that the spinel-based starting structure models are not close enough to the true structure of γ-Al2O3 to facilitate the derivation of its representative configuration. / Large numbers of structures demonstrate migration of cations to c symmetry positions, providing strong evidence that c symmetry positions are inherent in the structure. This supports the Cubic-16c and Tetragonal-8c structure models presented in Chapter Seven and suggests that these models are universal for crystalline γ-Al2O3. Optimisation of c symmetry based structures, with starting configurations based on the experimental findings, resulted in simulated diffraction patterns that were characteristic of γ-Al2O3.
18

Thermomechanical Processing of a Gamma-Prime Strengthened Cobalt-Base Superalloy

Weaver, Donald S. January 2018 (has links)
No description available.
19

RELATING MICROSTRUCTURE TO PROCESS VARIABLES IN BEAM-BASED ADDITIVE MANUFACTURING OF INCONEL 718

Thompson, John Ryan 04 June 2014 (has links)
No description available.
20

Heat Affected Zone Cracking of Allvac 718Plus Superalloy during High Power Beam Welding and Post-weld Heat Treatment

Idowu, Oluwaseun Ayodeji 08 April 2010 (has links)
The present dissertation reports the findings of a study of cracking behavior of a newly developed superalloy, Allvac 718Plus during high power beam welding and post-weld heat treatment. Microstructures of the base alloy, heat affected zone (HAZ) and fusion zone (FZ) of welded and post-weld heat treated (PWHT) coupons were examined by the use of standard metallographic techniques involving optical microscopy, analytical scanning electron microscopy (SEM) and analytical transmission electron microscopy. Moreover, grain boundary segregation behavior of boron atoms during pre-weld heat treatments was evaluated using secondary ion mass spectroscopic system. In the first phase of the research, 718Plus was welded using a low and high heat input CO2 laser to assess its weld cracking response. Detailed examination of the welds by analytical electron microscopic technique revealed the occurrence of cracking in the HAZ of low heat input welds, while their FZ was crack free. However, both the FZ and HAZ of high heat input welds were crack-free. Resolidified constituents were observed along the cracked grain boundaries of the lower heat input welds, which indicated that HAZ cracking in this newly developed superalloy was associated with grain boundary liquation. However, despite a more extensive liquation of grain boundaries and grain interior in the HAZ of high heat input welds, no cracking occurred. This was attributed to the combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid. Although HAZ cracking was prevented by welding with a high heat input laser, it resulted in a significant damage to the parent microstructure through its extensive liquation. Thus, the use of low heat input welding is desirable. However, this resulted in HAZ cracking which needs to be minimized or eliminated. Therefore, during the second phase of this research, the effects of pre-weld thermal processing on the cracking response of 718Plus were investigated. Results from the quantification of the cracking of the alloy showed that HAZ cracking may be significantly reduced or eliminated through an adequate selection of pre-weld thermal cycle. In the third stage of this research, crack-free welds of 718Plus were post-weld heat treated using standard thermal schedules. A significant solid state cracking of the alloy occurred during the PWHT. The cracking was attributed to the presence of embrittling phases on HAZ grain boundaries, coupled with aging contraction stresses that are generated by a considerable precipitation of gamma prime phase during aging.

Page generated in 0.0264 seconds