• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 1
  • Tagged with
  • 22
  • 22
  • 12
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A aplicaÃÃo de Gauss de superfÃcies no espaÃo de Heisenberg / The Gauss map of minimal surfaces on Heisenberg space

Josà Edson Sampaio 28 June 2012 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Nesta dissertaÃÃao, estudamos as superfÃcies mÃnimas do grupo de Heisenberg tridimensional, bem como a aplicaÃÃo de Gauss destas superfÃcies. Inicialmente à feito uma breve exposiÃÃo sobre a geometria do grupo de Heisenberg. EntÃo, mostramos que, em tal espaÃo: as Ãnicas superfÃcies com aplicaÃÃo de Gauss constante sÃo os planos verticais; nÃo existem superfÃcies totalmente umbÃlicas nem superfÃcies mÃnimas compactas; toda superfÃcie mÃnima Ã, necessariamente, estÃvel. Mostramos, ainda, que as Ãnicas superfÃcies mÃnimas verticais sÃo os planos verticais. Por fim, apresentamos uma classificaÃÃo das superfÃcies com aplicaÃÃo de Gauss de posto constante, igual a zero ou um. / In this report, we study minimal surfaces of the tridimensional Heisenberg group, as well as their Gauss maps. We begin with a short presentation of the geometry of the Heisenberg group. Then, we show that, in this space: the only surfaces with constant Gauss map are the vertical planes; there are no totally umbilical surfaces nor compact minimal surfaces; every minimal surface is, necessarily, stable. We also show that the only vertical minimal surfaces are vertical planes. Finally, we present a classification of the surfaces with Gauss map of constant rank, equal to zero or one.
2

Sobre a aplicaÃÃo de Gauss para hipersuperfÃcies de curvatura mÃdia constante na esfera / On the application of Gauss for hypersurfaces of constant mean curvature in sphere

Adam Oliveira da Silva 21 January 2009 (has links)
O objetivo desta dissertaÃÃo à apresentar um resultado similar ao Teorema de Bernstein sobre hipersuperfÃcies mÃnimas no espaÃo euclidiano, isto Ã, mostrar que tal resultado se generaliza para hipersuperfÃcies de Sn+1 com curvatura mÃdia constante, cuja aplicaÃÃo de Gauss estÃcontida em um hemis- fÃrio fechado de Sn+1 (Teorema 3.1). PorÃm, no caso em que a hipersuperfÃcie à mÃnima, utilizaremos na demonstraÃÃo deste teorema, um resultado sobre caracterizaÃÃo das hiperesferas de Sn+1 entre todas hipersuperfÃcies de Sn+1 em termos de suas imagens de Gauss (Teorema 2.1). / The objective of this dissertation is to show a similar result of Bernstein theorem about minimal hypersurfaces in Euclidian space, that is, to show that that result is generalized to hypersurfaces of Sn+1 with constant mean curvature, whose Gauss image is contained in a closed hemisphere of Sn+1(Theorem 3.1). However, in the case where the hypersurface is minimal, we will use in the proof of this theorem a result about the characterization of the hyperspheres of Sn+1 among all complete hypersurfaces in Sn+1 in terms of their Gauss images (Theorem 2.1)
3

r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+n

García Monera, María 29 May 2015 (has links)
[EN] Classically, the study of the contact with hyperplanes and hyperspheres has been realized by using the family of height and distance squared functions. On the first part of the thesis, we analyze the Taylor expansion of the exponential map up to order three of a submanifold $M$ immersed in $\r n.$ Our main goal is to show its usefulness for the description of special contacts of the submanifolds with geometrical models. As we analyze the contacts of high order, the complexity of the calculations increases. In this work, through the Taylor expansion of the exponential map, we characterize the geometry of order higher than $3$ in terms of invariants of the immersion, so that the effective computations in specific cases become more affordable. It allows also to get new geometric insights. On the second part of the thesis, we introduce the concept of critical point of a smooth map between submanifolds. If we consider a differentiable $k$-dimensional manifold $M$ immersed in $\r{k+n},$ we know that its focal set can also be interpreted as the image of the critical points of the {\it normal map} $\nu(m,u): NM\to \r{k+n}$ defined by $\nu(m,u)=\pi_N(m,u)+ u,$ for $m\in M$ and $u\in N_mM,$ where $\pi_N:NM\to M$ denotes the normal bundle. In the same way, the parabolic set of a differential submanifold is given through the analysis of the singularities of the height functions over the submanifold. If we consider a differentiable $k$-dimensional manifold $M$ immersed in $\r{k+n},$ we know that its parabolic set can also be interpreted as the image of the critical points of the {\it generalized Gauss map} $\psi(m,u): NM\to \r{k+n}$ defined by $\psi(m,u)= u,$ for $u\in N_mM.$ Finally, we characterize the asymptotic directions as the tangent set of a $k$-dimensional manifold $M$ immersed in $\r{k+n}$ throughout the study of the singularities of the tangent map $\Omega(m,y): TM\to \r{k+n}$ defined by $\Omega(m,y)=\pi(m,y)+y,$ for $y\in T_mM,$ where $\pi:TM\to M$ denotes the tangent bundle. We describe first the focal set and its geometrical relation to the Veronese of curvature for $k$-dimensional immersions in $\r{k+n}.$ Then we define the $r$-critical points of a differential map $f:H \to K$ between two differential manifolds and characterize the $2$ and $3$-critical points of the normal map and generalized Gauss map. The number of these critical points at $m\in M$ may depend on the degeneration of the curvature ellipse and we calculate those numbers in the particular case that $M$ is an immersed surface in $\r{4}$ for the normal map and $\r{5}$ for the generalized Gauss map. / [ES] En general, el estudio del contacto con hiperplanos e hiperesferas se ha llevado a cabo usando la familia de funciones altura y la función distancia al cuadrado. En la primera parte de la tesis analizamos el desarrollo de Taylor de la aplicación exponencial hasta orden 3 de una subvariedad $M$ inmersa en $\r n.$ Nuestro principal objetivo es mostrar su utilidad en el estudio de contactos especiales de subvariedades con modelos geométricos. A medida que analizamos los contactos de orden mayor, la complejidad de las cuentas aumenta. En este trabajo, a través del desarrollo de Taylor de la aplicación exponencial, caracterizamos la geometría de orden mayor que $3$ en términos de invariantes geométricos de la inmersión, por lo que el trabajo con las cuentas en casos especiales se convierte en más manejable. Esto nos permite también obtener nuevos resultados geométricos. En la segunda parte de la tesis se introduce el concepto de punto crítico de una aplicación regular entre subvariedades. Si consideramos una variedad diferenciable $M$ de dimensión $k$ e inmersa en $\r{k+n},$ sabemos que su conjunto focal puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación normal} $\nu(m,u): NM\to \r{k+n}$ definida por $\nu(m,u)=\pi_N(m,u)+ u,$ para $m\in M$ y $u\in N_mM,$ donde $\pi_N:NM\to M$ denota el fibrado normal. De la misma manera, el conjunto parabólico de una subvariedad diferencial viene dado por el análisis de las singularidades de la función altura sobre la subvariedad. Si consideramos una subvariedad $M$ de dimensión $k$ e inmersa en $\r{k+n},$ sabemos que su conjunto parabólico puede ser interpretado como la imagen de los puntos críticos de la {\it aplicación generalizada de Gauss} $\psi(m,u): NM\to \r{k+n}$ definida por $\psi(m,u)= u,$ donde $u\in N_mM.$ Finalmente, caracterizamos las direcciones asintóticas como el conjunto de direcciones del tangente de una subvariedad $M$ de dimensión $k$ e inmersa en $\r{k+n}$ a través del estudio de las singularidades de la aplicación tangente $\Omega(m,y): TM\to \r{k+n}$ definida por $\Omega(m,y)=\pi(m,y)+y,$ para $y\in T_mM,$ donde $\pi:TM\to M$ denota el fibrado tangente. Describimos primero el conjunto focal y su relación geométrica con la Veronese de curvatura para una variedad $k$ dimensional inmersa en $\r{k+n}.$ Entonces, definimos los puntos $r$-críticos de una aplicación $f:H \to K$ entre dos subvariedades y caracterizamos los puntos $2$ y $3$ críticos de la aplicación normal y la aplicación generalizada de Gauss. El número de estos puntos críticos en $m\in M$ depende de la degeneración de la elipse de curvatura y calculamos ese número en el caso particular de una superficie inmersa en $\r{4}$ para la aplicación normal y $\r{5}$ para la aplicación generalizada de Gauss. / [CA] En general, l'estudi del contacte amb hiperplans i hiperesferes s'ha dut a terme utilitzant la família de funcions altura i la funció distància al quadrat. A la primera part de la tesi analitzem el desenvolupament de Taylor de l'aplicació exponencial fins a ordre 3 d'una subvarietat $M$ immersa en $\r n.$ El nostre principal objectiu és mostrar la seua utilitat en l'estudi de contactes especials de subvarietats amb models geomètrics. A mesura que analitzem els contactes d'ordre major, la complexitat dels comptes augmenta. En aquest treball, a través del desenvolupament de Taylor de l'aplicació exponencial, caracteritzem la geometria d'ordre major que $ 3 $ en termes d'invariants geomètrics de la immersió, de manera que el treball amb els comptes en casos especials es converteix en més manejable. Això ens permet també obtenir nous resultats geomètrics. A la segona part de la tesi s'introdueix el concepte de punt crític d'una aplicació regular entre subvarietats. Si considerem una varietat diferenciable $ M $ de dimensió $ k $ i immersa en $ \r {k + n}, $ sabem que el seu conjunt focal pot ser interpretat com la imatge dels punts crítics de la {\it aplicació normal} $ \nu (m, u): NM \to \r {k + n} $ definida per $ \nu (m, u) = \pi_N (m, u) + o, $ per $ m \in M $ i $ u \in N_mM, $ on $ \pi_N: NM \to M $ denota el fibrat normal. De la mateixa manera, el conjunt parabòlic d'una subvarietat diferencial ve donat per l'anàlisi de les singularitats de la funció altura sobre la subvarietat. Si considerem una subvarietat $ M $ de dimensió $ k $ i immersa en $ \r {k + n}, $ sabem que el seu conjunt parabòlic pot ser interpretat com la imatge dels punts crítics de la {\it aplicació generalitzada de Gauss} $ \psi (m, u): NM \to \r{k + n} $ definida per $ \psi (m, u) = u, $ on $ u \in N_mM. $ Finalment, caracteritzem les direccions asimptòtiques com el conjunt de direccions del tangent d'una subvarietat $ M $ de dimensió $ k $ i immersa en $ \r{k + n} $ a través de l'estudi de les singularitats de l'aplicació tangent $ \Omega (m, y): TM \to \r {k + n} $ definida per $ \Omega (m, y) = \pi (m, y) + y, $ per $ y \in T_mM, $ on $ \pi: TM \to M $ denota el fibrat tangent. Descrivim primer el conjunt focal i la seva relació geomètrica amb la Veronese de curvatura per a una varietat $ k $ dimensional immersa en $ \r{k + n}. $ Llavors, definim els punts $ r $-crítics d'una aplicació $ f: H \to K $ entre dues subvarietats i caracteritzem els punts $ 2 $ i $ 3 $ crítics de l'aplicació normal i l'aplicació generalitzada de Gauss. El nombre d'aquests punts crítics en $ m \in M $ depèn de la degeneració de l'el·lipse de curvatura i calculem aquest nombre en el cas particular d'una superfície immersa en $ \r{4} $ per a l'aplicació normal i $ \r{5} $ per a l'aplicació generalitzada de Gauss. / García Monera, M. (2015). r-critical points and Taylor expansion of the exponential map, for smooth immersions in Rk+n [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/50935
4

On unicity problems of meromorphic mappings of Cn into PN(C) and the ramification of the Gauss maps of complete minimal surfaces / Problèmes d'unicité pour des applications méromorphes de Cn dans CPN et ramification de l'application de Gauss pour des surfaces minimales complètes

Ha, Pham Hoang 03 May 2013 (has links)
En 1975 H. Fujimoto a généralisé les résultats d’unicité pour des fonctions holomorphes dus à Nevanlinna pour des applications méromorphes de Cn dans CPN. Il a démontré que pour deux applications méromorphes non linéairement dégénérées f et g de Cn dans CPN, si elles ont les mêmes images réciproques, comptées avec leurs multiplicités, par rapport à (3N + 2) hyperplans de CPN en position générale, alors f g. Depuis, ce problème a été étudié d’une manière intensive par H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff-T.V.Tan, D.D.Thai-S.D.Quang, Chen-Yan et d’autres auteurs. En parallèle avec le développement de la théorie de Nevanlinna, la théorie de distribution des valeurs de l’application de Gauss des surfaces minimales dans Rm a été étudiée d’une manière intensive par R.Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S.J. Kao, M. Ru et d’autres auteurs. Dans cette thèse, nous avons continué d’étudier ces problèmes. Nous avons obtenu les résultats principaux suivants: +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant les mêmes images réciproques par rapport è (2N + 2) hyperplans de CPN. +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant des cibles mobiles et un ensemble d’identité petit. +) Théorèmes d’unicité avec multiplicités tronquées des applications méromorphes de Cn dans CPN ayant des cibles fixes ou mobiles et satisfaisant des conditions sur les dérivées. +) Théorèmes de ramification de l’application de Gauss de certaines classes de surfaces minimales complètes dans Rm (m = 3,4). / In 1975, H. Fujimoto generalized Nevanlinna’s known results for meromorphic fonctions to the case of meromorphic mappings of Cn into PN(C). He proved that for two linearly nondegenerate meromorphic mappings f and g of C into PN(C). if they have the saine inverse images counted with multiplicities for 3N + 2 hyperplanes in general position in PN(C) then f = g. After that, this problem has been studied intensively by a number of mathematicans as H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff - T. V. Tan, D. D. Thai - S. D. Quang, Chen-Yan and so on. Parallel to the development of Nevanlinna theory, the value distribution theory of the Gauss map of minimal surfaces immersed in Rm vas studied by many mathematicans as R. Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S. J. Kao, M. Ru and many other mathematicans. In this thesis, we continuous studing some problems on these directions. The main goals of the thesis are followings. • Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) sharing 2N + 2 fixed hyperplanes.• Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) for moving targets, and a small set of identity.
5

[en] CONTINUED FRACTIONS: ERGODIC AND APPROXIMATION PROPERTIES / [pt] FRAÇÕES CONTÍNUAS: PROPRIEDADES ERGÓDICAS E DE APROXIMAÇÃO

DANIELLE DE REZENDE JORGE 26 July 2006 (has links)
[pt] Neste trabalho apresentaremos a teoria de frações contínuas enfatizando a interação entre a teoria de números (expansões de números, aproximações diofantinas e boas aproximações) e a teoria ergódica. Estudaremos a transformação de Gauss e construiremos uma medida ergódica desta transformação. Usando o Teorema Ergódico de Birkhoff obteremos resultados sobre a expansão em frações contínuas de quase todo número real em [0,1). Obteremos propriedades sobre a aproximação de números reais por racionais, sobre a frequência com que aparecem determinados números na expansão em frações contínuas, etc. Estudaremos também o shift de Bernolli e sua relação com a transformação de Gauss. Finalmente, calcularemos a entropia desta transformação. / [en] We study the theory of continued fractions emphasizing the interaction between theory of numbers (expansion of numbers, diophantine approximations, best approximations) and ergodic theory. We study the Gauss transformation and construct its ergodic measure. Using the Birkhoff Ergodic Theorem we obtain results about the expansion in continued fractions of almost every real number in [0, 1). We obtain properties about the approximation of real numbers by rational ones, the frequency of digits in the expansion by continued fractions, etc. We also study the Bernoulli shift and its relation with the Gauss map. Finally, we calculate the entropy of such a transformation
6

On unicity problems of meromorphic mappings of Cn into PN(C) and the ramification of the Gauss maps of complete minimal surfaces

Ha, Pham Hoang 03 May 2013 (has links) (PDF)
In 1975, H. Fujimoto generalized Nevanlinna's known results for meromorphic fonctions to the case of meromorphic mappings of Cn into PN(C). He proved that for two linearly nondegenerate meromorphic mappings f and g of C into PN(C). if they have the saine inverse images counted with multiplicities for 3N + 2 hyperplanes in general position in PN(C) then f = g. After that, this problem has been studied intensively by a number of mathematicans as H. Fujimoto, W. Stoll, L. Smiley, M. Ru, G. Dethloff - T. V. Tan, D. D. Thai - S. D. Quang, Chen-Yan and so on. Parallel to the development of Nevanlinna theory, the value distribution theory of the Gauss map of minimal surfaces immersed in Rm vas studied by many mathematicans as R. Osserman, S.S. Chern, F. Xavier, H. Fujimoto, S. J. Kao, M. Ru and many other mathematicans. In this thesis, we continuous studing some problems on these directions. The main goals of the thesis are followings. * Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) sharing 2N + 2 fixed hyperplanes.* Unicity theorems with truncated multiplicities of meromorphic mappings of Cn into PN(C) for moving targets, and a small set of identity.
7

The Geometry of Maximum Principles and a Bernstein Theorem in Codimension 2

Assimos Martins, Renan 14 November 2019 (has links)
We develop a general method to construct subsets of complete Riemannian manifolds that cannot contain images of non-constant harmonic maps from compact manifolds. We apply our method to the special case where the harmonic map is the Gauss map of a minimal submanifold and the complete manifold is a Grassmannian. With the help of a result by Allard [Allard, W. K. (1972). On the first variation of a varifold. Annals of mathematics, 417-491.], we can study the graph case and have an approach to prove Bernstein-type theorems. This enables us to extend Moser’s Bernstein theorem [Moser, J. (1961). On Harnack's theorem for elliptic differential equations. Communications on Pure and Applied Mathematics, 14(3), 577-591.] to codimension two, i.e., a minimal p-submanifold in $R^{p+2}$, which is the graph of a smooth function defined on the entire $R^p$ with bounded slope, must be a p-plane.
8

Geometria de curvas e subvariedades bi-harmônicas / Geometry of biharmonic curves and submanifolds

Passamani, Apoenã Passos 23 June 2015 (has links)
Neste trabalho estudamos essencialmente problemas relacionados aos conceitos de superfícies e curvas bi-harmônicas e de superfícies de ângulo constante. Caracterizamos as curva bi-harmônicas do grupo especial linear SL(2,R). Em particular, mostramos que todas as curvas bi-harmônicas de SL(2,R) são hélices e damos suas parametrizações explícitas como curvas do espaço pseudo-Euclidiano R42. Estudamos as superfícies biconservativas (as quais representam uma grande família que inclui as superfícies bi-harmônicas) nos espaços de Bianchi-Cartan-Vranceanu, obtendo a caracterização daquelas de ângulo constante e daquelas SO(2)-invariantes. Também, caracterizamos as superfícies de ângulo constante do espaço Euclidiano tridimensional que possuem aplicação de Gauss bi-harmônica, provando que são cilindros de Hopf sobre uma clotóide. Além disto, caracterizamos as superfícies de ângulo contante de SL(2,R). Mais especificamente, damos uma descrição local explícita para estas superfícies em termos de uma determinada curva de SL(2,R) e de uma família a um parâmetro de isometrias do espaço ambiente. / In this work we mainly study some problems related to the concept of biharmonic curves and surfaces and to surfaces of constant angle. We characterize the biharmonic curves in the special linear group SL(2,R). In particular, we show that all proper biharmonic curves in SL(2,R) are helices and we give their explicit parametrizations as curves in the pseudo-Euclidean space R42</sub. We study the biconservative surfaces (which represent a large family including the biharmonic surfaces) in the Bianchi-Cartan-Vranceanu spaces, obtaining the characterization of those with constant angle and of those which are SO(2)-invariant. Furthermore, we characterize the constant angle surfaces of the three-dimensional Euclidean space which have bi-harmonic Gauss map, proving that they are Hopf cylinders over a clothoid. Also, we characterize the constant angle surfaces of SL(2,R). In particular, we give an explicit local description of these surfaces by means of a suitable curve of SL(2,R) and a 1-parameter family of isometries of SL(2,R).
9

Classes de hipersuperfícies Weingarten generalizada no espaço euclidiano / Classes of generalized Weingarten hypersurfaces in the euclidean space

Dias, D. G. 29 September 2014 (has links)
Submitted by Luanna Matias (lua_matias@yahoo.com.br) on 2015-02-05T10:44:34Z No. of bitstreams: 2 Tese - Diogo Gonçalves Dias - 2014.pdf.pdf: 490676 bytes, checksum: 3c0940e1fbec55f277f969c4751c5ea6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-02-05T11:02:53Z (GMT) No. of bitstreams: 2 Tese - Diogo Gonçalves Dias - 2014.pdf.pdf: 490676 bytes, checksum: 3c0940e1fbec55f277f969c4751c5ea6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-02-05T11:02:53Z (GMT). No. of bitstreams: 2 Tese - Diogo Gonçalves Dias - 2014.pdf.pdf: 490676 bytes, checksum: 3c0940e1fbec55f277f969c4751c5ea6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-09-29 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / We present hypersurfaces with prescribed normal Gauss map. These surfaces are obtained as the envelope of a sphere congruence where the other envelope is contained in a plane. We introduce classes of surfaces that generalize linear Weingarten surfaces, where the coefficients are functions that depend on the support function and the distance function from a fixed point (in short, DSGW-surfaces). The linear Weingarten surfaces, the Appell’s surfaces and the Tzitzeica’s surfaces are all DSGW-surfaces. From them we obtain new classes of DSGW-surfaces applying inversions and dilatations. For a special class of DSGW-surfaces, which is invariant under dilatations and inversions, we obtain a Weierstrass type representation (in short, EDSGW-surfaces). As application we classify the EDSGW-surfaces of rotation and present a 4-parameter family of complete cyclic EDSGW-surfaces with an isolated singularity and foliated by non-parallel planes. We generalized the EDSGW-surfaces for the case of hypersurfaces in Rn+1, n ≥ 2. We present a representation for these hypersurfaces in the case where the stereographic projection of the normal Gauss map N is given by the identity application. As an application, we will characterize the rotational examples. / Apresentamos parametrizações de hipersuperfícies com aplicação normal de Gauss prescrita. Estas parametrizações são obtidas como o envelope de uma congruência de esferas onde o outro envelope esta contido em um hiperplano. Introduzimos classes de superfícies que generalizam as superfícies de Weingarten linear, onde os coeficientes são funções que dependem da função suporte e da função distância a um ponto fixo (superfícies WGSD). Classes conhecidas destas superfícies são as superfícies de Weingarten linear, as superfícies de Appell e as superfícies de Tzitzéica. A partir delas obtemos novas classes de superfícies WGSD aplicando inversões e dilatações. Para uma classe especial de superfícies WGSD, que é invariante por dilatações e inversoes (superfícies WGSDE), obtemos uma representação tipo Weierstrass, dependendo de duas funções holomorfas. Como aplicação classificamos as superfícies WGSDE de rotação e apresentamos uma família a 4-parâmetros de superfícies WGSDE cíclicas completas com uma singularidade isolada e com planos de folheação não paralelos. Terminamos generalizando as superfícies WGSDE para o hipersuperfícies em Rn+1, n ≥ 2. Apresentaremos uma representação para estas hipersuperfícies no caso em que a projeção estereográfica da normal de Gauss N é dada pela aplicação identidade. Como aplicação, caracterizaremos os exemplos rotacionais.
10

Aspectos topológicos na teoria geométrica de folheações / Topological aspects in the geometric theory of foliations

Gonçalves, Icaro 09 December 2016 (has links)
Neste trabalho calculamos a classe de Euler de uma folheação umbílica em um ambiente com forma de curvatura apropriada. Combinamos o teorema de Hopf-Milnor e o número de Euler de uma folheação, definido por Connes, para mostrar como a geometria da folheação influencia na topologia da variedade folheada, bem como na topologia da folheação. Além disso, exibimos uma lista de invariantes topológicos para campos vetoriais unitários em hipersuperfícies fechadas do espaço Euclidiano, e mostramos como estes invariantes podem ser empregados como obstruções a certas folheações com geometria prescrita. / In this work we compute the Euler class of an umbilic foliation on a manifold with suitable curvature form. We combine the Hopf-Milnor theorem and the Euler number of a foliation, defined by Connes, in order to show how the geometry of the foliation influences the topology of the foliated space as well as the topology of the foliation. Besides, we exhibit a list of topological invariants for unit vector fields on closed Euclidean hypersurfaces, and show how these invariants may be employed as obstructions to certain foliations with prescribed geometry.

Page generated in 0.0345 seconds