• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 201
  • 75
  • 55
  • 26
  • 10
  • 9
  • 4
  • 3
  • Tagged with
  • 445
  • 445
  • 72
  • 70
  • 69
  • 68
  • 44
  • 43
  • 40
  • 38
  • 38
  • 37
  • 32
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Design, Syntheses and Biological Activities of Paclitaxel Analogs

Zhao, Jielu 03 May 2011 (has links)
The conformation of paclitaxel in the bound state on the protein has been proposed to be the T-taxol conformation, and paclitaxel analogs constrained to the T-taxol conformation proved to be significantly more active than paclitaxel in both cytotoxicity and tubulin polymerization assays, thus validating the T-taxol conformation as the tubulin-binding conformation. In this work, eight compounds containing an aza-tricyclic moiety as a mimic of the baccatin core of paclitaxel have been designed and synthesized as water-soluble simplified paclitaxel analogs, among which 3.50-3.52 and 3.55 were conformationally constrained analogs designed to bind to the paclitaxel binding site of tubulin, based on their similarity to the T-taxol conformation. The open-chain analogs 3.41-3.43 and 3.57 and the bridged analogs 3.50-3.52 and 3.55 were evaluated for their antiproliferative activities against the A2780 cell lines. Analogs 3.50-3.52 and 3.55 which were designed to adopt the T-taxol conformation showed similar antiproliferative activities compared to their open-chain counterparts. They were all much less active than paclitaxel. In the second project, a series of paclitaxel analogs with various thio-containing linkers at C-2′ and C-7 positions were designed and synthesized in our lab. These analogs were attached to the surfaces of gold nanoparticles by CytImmune Sciences for the development of mutifunctional tumor-targeting agents. The native analogs and the gold bound analogs were evaluated for their antiproliferative activities against the A2780 cell line. All the compounds tested showed comparable or better activities than paclitaxel. Stability studies were performed for selected analogs in hydrolysis buffer, which showed that the analogs released paclitaxel in buffer over time. In the third project, the synthesis of a conformationally constrained paclitaxel analog which was designed to mimic the REDOR-taxol conformation was attempted. Two synthetic routes were tried and significant progress was made toward the synthesis of the conformationally constrained analog. However, both of the current synthetic routes failed to produce the key intermediate that would serve as the precursor for a ring-closing metathesis reaction to furnish the macrocyclic ring. / Ph. D.
202

Peptide-mediated growth and dispersion of Au nanoparticles in water via sequence engineering

Nguyen, M.A., Hughes, Zak E., Liu, Y., Li, Y., Swihart, M.T., Knecht, M.R., Walsh, T.R. 03 May 2018 (has links)
Yes / The use of peptides to nucleate, grow, and stabilize nanoparticles in aqueous media via non-covalent interactions offers new possibilities for creating functional, water-dispersed inorganic/organic hybrid materials, particularly for Au nanoparticles. Numerous previous studies have identified peptide sequences that both possess a strong binding affinity for Au surfaces and are capable of supporting nanoparticle growth in water. However, recent studies have shown that not all such peptide sequences can produce stable dispersions of these nanoparticles. Here, via integrated experiments and molecular modeling, we provide new insights into the many factors that influence Au nanoparticle growth and stabilization in aqueous media. We define colloidal stability by the absence of visible precipitation after at least 24 hours post-synthesis. We use binding affinity measurements, nanoparticle synthesis, characterization and stabilization assays, and molecular modeling, to investigate a set of sequences based on two known peptides with strong affinity for Au. This set of biomolecules is designed to probe specific sequence and context effects using both point mutations and global reorganization of the peptides. Our data confirm, for a broader range of sequences, that Au nanoparticle/peptide binding affinity alone is not predictive of peptide-mediated colloidal stability. By comparing nanoparticle stabilization assay outcomes with molecular simulations, we establish a correlation between the colloidal stability of the Au nanoparticles and the degree of conformational diversity in the surface-adsorbed peptides. Our findings suggest future routes to engineer peptide sequences for bio-based growth and dispersion of functional nanoparticles in aqueous media. / Air Office of Scientific Research, grant number FA9550-12-1-0226.
203

Molecular insights on the interference of simplified lung surfactant models by gold nanoparticle pollutants

Hossain, S.I., Gandhi, N.S., Hughes, Zak E., Gu, Y.T., Saha, S.C. 01 July 2019 (has links)
Yes / Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on lung function are not well understood. Coarse-grained molecular dynamics simulations were carried out to elucidate the interactions of AuNPs with simplified LS monolayers at the nanoscale. It was observed that the interactions of AuNPs and LS components deform the monolayer structure, change the biophysical properties of LS and create pores in the monolayer, which all interfere with the normal lungs function. The results also indicate that AuNP concentrations >0.1 mol% (of AuNPs/lipids) hinder the lowering of the LS surface tension, a prerequisite of the normal breathing process. Overall, these findings could help to identify the possible consequences of airborne NPs inhalation and their contribution to the potential development of various lung diseases. / University of Technology Sydney (UTS) FEIT Research Scholarship, UTS IRS (S.I.H.), 2018 Blue Sky scheme–Suvash Saha (Activity 2232368), N.S.G is supported by the Vice-Chancellor fellowship funded by QUT.
204

The role of SP-B1-25 peptides in lung surfactant monolayers exposed to gold nanoparticles

Hossain, S.I., Gandhi, N.S., Hughes, Zak E., Saha, S.C. 29 June 2020 (has links)
Yes / Lung surfactant (LS) monolayers that continuously expand and compress during breathing cycles, act as the first line barrier for inhaled nanoparticles. It is known that nanoparticles which adsorb to the surface of the surfactant layer facilitate the rearrangement of lipids and peptides at various stages of the breathing cycle. However, the structural mechanisms for this ability of the lipid rearrangement are not yet fully understood. Coarse-grained molecular dynamics simulations are performed to investigate the role of surfactant protein B (SP-B) segments (SP-B1–25) in modulating the biophysical properties of the surfactant monolayer in the presence of polydisperse gold nanoparticles (AuNPs) at different concentrations. Herein, we observe that the AuNPs significantly alter the inherent structural and dynamical properties of the monolayer and its components in three different breathing states. When adsorbed into the monolayer, the AuNPs inhibit the ability of the monolayer to recover its surface tension and other properties. The presence of SP-B1–25 in the monolayer accelerates the diffusion of the monolayer phospholipids, contrarily to the role of AuNPs on phospholipid diffusion. Also, the AuNPs and the peptides in the monolayer significantly increase their agglomeration in the presence of one another. Overall, the simulations predict that the presence of polydisperse AuNPs hampers the stability and biophysical functions of the LS in contrast to the role of the peptide. This study provides a clear view of the hydrophobic peptide role in the LS monolayer at the interface along with the interactions and the translocation of AuNPs that could have a significant impact to assess the NPs inhalation. / This work was completed with the support of University of Technology Sydney (UTS) FEIT Research Scholarship, UTS IRS (S. I. H.).
205

Bipolar electrochemistry for high throughput screening applications

Munktell, Sara January 2016 (has links)
Bipolar electrochemistry is an interesting concept for high throughput screening techniques due to the ability to induce gradients in a range of materials and their properties, such as composition, particle size, or dopant levels, among many others. One of the key advantages of the method is the ability to test, create or modify materials without the need for a direct electrical connection. In this thesis, the viability of this method has been explored for a range of possible applications, such as metal recycling, nanoparticle modification and corrosion analysis. In the initial part of the work a process to electrodeposit gradients in metal composition was evaluated, with a view to applying the technique to the extraction and recycling of metals from fly ash. Compositional gradients in the metals under study could be readily obtained from controlled reference solutions, although the spatial resolution of the metals was not sufficient to perform separation. Only copper could be easily deposited from the fly ash solution. Bipolar electrodeposition was also successfully used to modify the particle size across substrates decorated with gold nanoparticles. The approach was demonstrated both for surfaces possessing either a uniform particle density or a gradient in particle density. In the latter case samples with simultaneous, orthogonal gradients in both particle size and density were obtained. A combination of the bipolar approach with rapid image analysis was also evaluated as a method for corrosion screening, using quantitative analysis of gradients in pitting corrosion damage on stainless steels in HCl as a model system. The factors affecting gradient formation and the initiation of corrosion were thoroughly investigated by the use of a scanning droplet cell (SDC) technique and hard x-ray photoelectron spectroscopy (HAXPES). The ability to screen arrays of different materials for corrosion properties was also investigated, and demonstrated for stainless steel and Ti-Al alloys with pre-formed compositional gradients. The technique shows much promise for further studies and for high throughput corrosion screening applications.
206

Investigation of gold nanoparticle accumulation kinetics for effective cancer targeting

Park, Jaesook 09 November 2010 (has links)
Gold nanoparticles (GNP) have been widely used as optical imaging and photothermal therapy agents due to their biocompatibility, simplicity of conjugation chemistry, optical tunability and efficient light conversion to heat. A number of in vitro and in vivo studies have demonstrated that they can be used as effective thermal therapy and imaging contrast agents to treat and diagnose cancer. As clinical applications of GNPs for cancer imaging and therapy have gained interest, efforts for understanding their accumulation kinetics has become more important. Given the recent demonstration of intrinsic two-photon induced photoluminescence (TPIP) of gold nanoshells (GNSs) and gold nanorods (GNRs), TPIP imaging is an efficient tool for investigating the microscopic distribution of the GNPs at intra-organ level. The following work explores these GNPs’ physical and optical properties for effective use of GNPs in TPIP imaging and examines the feasibility of using intrinsic TPIP imaging to investigate GNP’s biodistribution in bulk tumors and thin tissue slices processed for standard histology. Our results showed that GNPs yield a strong TPIP signal, and we found that the direct luminescence-based contrast imaging of GNPs can image both GNPs and nuclei, cytoplasm or vasculature simultaneously. Also, we present the effect of GNP morphology on their distribution within organs. Collected images showed that GNPs had a heterogeneous distribution with higher accumulation at the tumor periphery. However, GNRs had deeper penetration into tumor than GNRs due to their shape and size. In addition, GNPs were observed in unique patterns close to vasculature. Finally, we introduce single- and multiple-dose administrations of GNPs as a way of increasing GNP accumulation in tumor. Our results show that multiple dosing can increase GNP accumulation in tumor 1.6 to 2 times more than single dosing. Histological analysis also demonstrated that there were no signs of acute toxicity in tumor, liver and spleen excised from the mice receiving 1 injection, 5 injections of GNPs and trehalose injection. / text
207

Switching mechanisms, electrical characterisation and fabrication of nanoparticle based non-volatile polymer memory devices

Prime, Dominic Charles January 2010 (has links)
Polymer and organic electronic memory devices offer the potential for cheap, simple memories that could compete across the whole spectrum of digital memories, from low cost, low performance applications, up to universal memories capable of replacing all current market leading technologies, such as hard disc drives, random access memories and Flash memories. Polymer memory devices (PMDs) are simple, two terminal metal-insulator-metal (MIM) bistable devices that can exist in two distinct conductivity states, with each state being induced by applying different voltages across the device terminals. Currently there are many unknowns and much ambiguity concerning the working mechanisms behind many of these PMDs, which is impeding their development. This research explores some of these many unanswered questions and presents new experimental data concerning their operation. One prevalent theory for the conductivity change is based on charging and charge trapping of nanoparticles and other species contained in the PMD. The work in this research experimentally shows that gold nanoparticle charging is possible in these devices and in certain cases offers an explanation of the working mechanism. However, experimental evidence presented in this research, shows that in many reported devices the switching mechanism is more likely to be related to electrode effects, or a breakdown mechanism in the polymer layer. Gold nanoparticle charging via electrostatic force microscopy (EFM) was demonstrated, using a novel device structure involving depositing gold nanoparticles between lateral electrodes. This allowed the gold nanoparticles themselves to be imaged, rather than the nanoparticle loaded insulating films, which have previously been investigated. This method offers the advantages of being able to see the charging effects of nanoparticles without any influence from the insulating matrix and also allows charging voltages to be applied via the electrodes, permitting EFM images to capture the charging information in near real-time. Device characteristics of gold nanoparticle based PMDs are presented, and assessed for use under different scenarios. Configurations of memory devices based on metal-insulator-semiconductor (MIS) structures have also been demonstrated. Simple interface circuitry is presented which is capable of performing read, write and erase functions to multiple memory cells on a substrate. Electrical properties of polystyrene thin films in the nanometre thickness range are reported for the first time, with insulator trapped charges found to be present in comparable levels to those in silicon dioxide insulating films. The dielectric breakdown strength of the films was found to be significantly higher than bulk material testing would suggest, with a maximum dielectric strength of 4.7 MV•cm-1 found, compared with the manufacturers bulk value of 0.2 – 0.8 MV•cm-1. Conduction mechanisms in polystyrene were investigated with the dominant conduction mechanism found to be Schottky emission.
208

Studium D-A a pi-pi interakcí a jejich využití při samoskladbě / The D-A and pi-pi interactions and their use in self-assembly

Rejchrtová, Blanka January 2014 (has links)
The D-A and π-π Interactions and Their Use in Self-Assembly Due to their well-defined shape, size and properties gold nanoparticles represent an advantageous platform for the study of non-covalent interactions between ligands anchored to their surface both in solution and in monolayers or thin films. The aim of this thesis was the synthesis of ligands for gold nanoparticles bearing an anchoring group at one end and a planar π-electron rich pyrene unit at the other. Six structurally variable ligands were prepared differing in the pyrene substitution pattern and the spacer between the aromatic part and the acetylated thiol function. Furthermore, a synthetic pathway leading to extended π-electron systems (both electron rich and electron poor) such as hexabenzocoronene derivatives and its fragments was explored. The key steps in the synthesis of these compounds are the cyclization reactions of alkynes leading to polycyclic intermediates and their ensuing cyclodehydrogenation (Scholl reaction). All of the prepared ligands and their intermediates were characterized by spectroscopic methods. The structure of the key hexakis(pentafluorosulfanyl-phenyl)benzene was confirmed by single crystal X-ray crystallography. The prepared ligands bearing a pyrene unit were deacetylated and anchored to the surface of...
209

Propriétés optiques effectives de films composites de polymère et de nanoparticules d’or / Effective optical properties of polymer - gold nanoparticle composite films

Vieaud, Julien 14 November 2011 (has links)
Nous étudions, par ellipsométrie spectroscopique, les propriétés optiques dans le domaine de l'UV-Visible-Infrarouge de films composites constitués de polymère et de nanoparticules d'or. Nous étudions la relation entre ces mesures et la structure des nanocomposites, que nous étudions par microscopie à force atomique en particulier. Nous distinguons l’analyse de films épais (tri-dimensionnels) et minces (quasi-bidimensionnels). Dans les deux cas, nous confrontons les résultats expérimentaux à des modèles théoriques de milieux effectifs dérivés de Maxwell-Garnett, en particulier. / By spectroscopic ellipsometry, we study the optical properties in the range of UV-Visible-Infrared of composites films made of polymer and gold nanoparticles. We study the relation between these measurement and the structure of the nanocomposites, that we study by atomic force microscopy in particular. We distinguish the analysis of thicks films (tridimensionals) and thins (quasi-bidimensionals). In both of case, we confronte these experimentals results to the theoric models of effectives medium derivated for Maxwell-Garnett in particular.
210

Quantification des espèces radicalaires produites en présence de nanoparticules d’or soumises à un rayonnement ionisant / Quantification of the radicals’ species produced in the presence of gold nanoparticles submitted to ionizing radiation

Gilles, Manon 06 July 2015 (has links)
Afin d’améliorer les traitements par radiothérapie, des radiosensibilisateurs tels que les nanoparticules d’or (NPo) sont étudiés. Mais leur translation en clinique nécessite une bonne compréhension des phénomènes en jeu. Si l’effet radiosensibilisateur a bien été confirmé sur des cibles biologiques (ADN, cellules et in vivo) et si les radicaux hydroxyle ont souvent été proposés comme intermédiaires, aucune preuve claire n’a encore été apportée. Ce travail avait pour premier objectif d’élaborer un protocole de « référence » afin de quantifier les radicaux hydroxyle et les électrons produits par les NPo en interaction avec un rayonnement ionisant. Cette étude a mis en évidence des productions massives de ces deux espèces pour des NPo non-fonctionnalisées. De plus, l'étude de différents paramètres, tels que la quantité de dioxygène en solution ou le rayonnement incident, nous a conduits à proposer un nouveau mécanisme permettant de rendre compte de nos résultats. Néanmoins, l'application biologique des NPo ne peut être envisagée que si ces nano-objets sont fonctionnalisés afin de les rendre furtifs et de les adresser spécifiquement à la tumeur. Après synthèse et caractérisation poussée de différents types de NPo fonctionnalisées, nous avons comparé la production de radicaux hydroxyle avec la dégradation d’une cible biologique, l'ADN, et mis en évidence l'impact significatif de la fonctionnalisation sur l'effet radiosensibilisateur. Ainsi, cette étude apporte des informations essentielles en vue de l’optimisation de la conception des NPo les plus efficaces pour la radiosensibilisation, une première étape vers leur application radiothérapeutique. / To improve radiotherapy efficiency, radiosensitizers such as gold nanoparticles (GNP) are developed. But to translate them to clinics, a good knowledge of the processes at stage is needed. GNP radiosensitizing effect was well-confirmed on biological targets (DNA, cells and in vivo) and hydroxyl radicals are often proposed to be key intermediates, but no clear evidence has been given yet. In this work, we first developed a ‘reference’ protocol to quantify hydroxyl radicals and electrons produced by GNP in their interaction with ionizing radiation. These investigations reveal a massive production of both species for non-functionalized GNP. Moreover the study of various parameters such as the concentration of dissolved dioxygen or the energy of the incident radiation leads us to propose a new mechanism on the origin of the radiosensitizing effect. Nevertheless, biological applications of GNP can only be considered if the nano-objects are functionalized to make them furtive, address them or deliver medicines to the tumor. After synthesis and characterization of different functionalized GNP, we compared hydroxyl radicals production with the damages induced on DNA and highlighted a significant impact of functionalization on the radiosensitizing effect. Finally, this work gives valuable information for the design of the most efficient GNP for radiotherapy which is a first step towards their medical application.

Page generated in 0.0457 seconds