Spelling suggestions: "subject:"[een] HYDRATE"" "subject:"[enn] HYDRATE""
111 |
An investigation into the use of fluorinated hydrating agents in the desalination of industrial wastewater.Petticrew, Cassandra. January 2011 (has links)
Salts in solution should be removed by desalination techniques to prevent equipment fouling and
corrosion. Common desalination technologies are energy intensive such as Multi Stage Flash
(MSF) distillation which requires 14.5 J/m3 (Ribeiro. J, 1996) of energy. Desalination technologies
produce purified water and a concentrated salt solution, where the salt concentration is dependent
on the desalination technology used. This work investigates gas hydrate technology as a possible
desalination technology.
Hydrates are composed of guest molecules and host molecules. Guest molecules may be in the
form of a liquid or gas. During hydrate formation, host molecules, water, form a cage enclosing the
guest molecule. Common hydrate formers or guest molecules such as; methane, ethane, propane
and carbon dioxide are currently being investigated in literature, for use in gas hydrate desalination
technology. Common hydrate formers form hydrates at low temperatures; below 288 K and high
pressures; above 2 MPa. To increase the temperature and reduce the pressure at which gas hydrates
form, commercially available hydrofluorocarbon hydrate formers such as R14, R32, R116, R134a,
R152a, R218, R404a, R407c, R410a and R507 are preliminarily investigated in this work.
The criteria for choosing the most suitable fluorine-based formers require the former to be:
environmentally acceptable where it is approved by the Montreal Protocol; non-toxic where it has a
low acute toxicity; non-flammable; chemically stable; a structure II hydrate to simplify the washing
process; available in commercial quantities; low cost in comparison to other hydrate formers;
compatible with standard materials and contain a high critical point for a large heat of vaporisation
(McCormack and Andersen, 1995). Taking all these criteria into account, R134a was chosen for
further investigation as a possible hydrate former.
In this work, hydrate-liquid-vapour phase equilibrium measurements are conducted using the
isochoric method with a static high pressure stainless steel equilibrium cell. The Combined
Standard Uncertainty for the 0-1 MPa pressure transducer, 0-10 MPa pressure transducer and the
Pt100 temperature probes are ±0.64 MPa, ±5.00 MPa and ±0.09 K respectively. Vapour pressure
measurements for Hydrofluoropropyleneoxide, CO2, R22 and R134a were measured to verify the
pressure and temperature calibrations. Hydrate test systems for R22 (1) + water (2) and R134a (1)
+ water (2) were measured to verify calibrations, equipment and procedures. New systems
measured included R134a (1) + water (2) + {5wt%, 10wt% or 15wt%} NaCl (3).
For the system R134 (1) + water (2) at 281 K the dissociation pressure is 0.269 MPa. However,
addition of NaCl to the system resulted in a shift of the HVL equilibrium phase boundary to lower
temperatures or higher pressures. The average shift in temperature between the system R134a (1) +
water (2) containing no salt and the systems containing {5, 10 and 15} wt% NaCl are -1.9K, -4.8K
and -8.1K respectively.
In this work, the measured systems were modelled using two methods of approach. The first
method is where hydrofluorocarbon hydrate former solubility is included, (Parrish et al., 1972) and
the second is where hydrofluorocarbon hydrate former solubility is ignored, (Eslamimanesh et al.,
2011). From these models, it is found that hydrofluorocarbon solubility could not be neglected.
In this work, the hydrate phase was modelled using modifications of the van der Waals and
Platteeuw model, (Parrish et al., 1972). The liquid and vapour phases are modelled using the Peng-
Robinson equation of state with classical mixing rules (Peng, 1976). The electrolyte component is
modelled using the Aasberg-Peterson model (Aasberg-Petersen et al., 1991) modified by Tohidi
(Tohidi et al., 1995). The percent absolute average deviation (%AAD) for the systems, which
includes solubility, is 0.41 for R22 (1) + water (2) and 0.33 for R134a (1) + water (2). For the
system R134a (1) + water (2) + {5 wt%, 10 wt% or 15 wt%} NaCl (3) the % AAD is 5.14.
Using the hydrate former, R134a, is insufficient to ensure gas hydrate technology is competitive
with other desalination technologies. Hydrate dissociation temperature should be increased and
pressure decreased further to ambient conditions. As evident in literature, promoters, such as
cyclopentane, are recommended to be added to the system to shift the HLV equilibrium phase
boundary as close to ambient conditions as possible. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
|
112 |
Captage du dioxyde de carbone par cristallisation de clathrate hydrate en présence de cyclopentane : Etude thermodynamique et cinétiqueGalfré, Aurélie 14 February 2014 (has links) (PDF)
Le CO2 est capté par formation de clathrates hydrates sous l'action d'un promoteur de cristallisation thermodynamique. Les clathrates hydrates sont des composés d'inclusion non stœchiométriques formés de molécules d'eau organisées en réseau de cavités piégeant des molécules de gaz. Ce procédé de captage consiste à piéger de façon sélective le dioxyde de carbone dans les cavités des clathrates hydrates et à le séparer ainsi des autres gaz. Les hydrates mixtes de cyclopentane (CP) + gaz ont été étudiés dans le cadre du projet FUI ACACIA et du projet européen ICAP. Les premières expériences se sont focalisées sur l'étude des équilibres quadri phasiques (gaz CO2/N2, eau liquide, cyclopentane liquide et hydrate). Le cyclopentane est un promoteur thermodynamique qui forme des hydrates mixtes de CO2 + N2 + CP à basse pression et température modérée. La pression d'équilibre des hydrates mixtes est réduite jusqu'à 97% par rapport à la pression d'équilibre initiale des hydrates de gaz. La sélectivité de captage du CO2 dans les hydrates mixtes est augmentée et le volume de gaz stocké est de 40 m3gaz/m3hydrate. Une seconde étude expérimentale, conduite en présence d'une sonde FBRM (Focused Beam Reflectance Measurements) et d'une émulsion stable directe de CP/eau, a montré que la cinétique de cristallisation des hydrates mixtes de CP + CO2 est limitée par la diffusion du gaz à l'interface gaz/liquide. La sonde FBRM permet de détecter parfaitement l'apparition de la nucléation. Le changement de profil de la distribution en longueurs de corde (CLD) est non seulement lié à l'apparition des mécanismes de cristallisation (dont l'agglomération) mais aussi à la disparition des gouttes de CP au profit des hydrates qui cristallisent par un mécanisme à cœur rétrécissant.
|
113 |
Caracterização da estrutura de curto alcance em sólidos inorgânicos através da espectroscopia por ressonância magnética nuclear de alta resolução. / Short-range structure characterization of inorganic solids by high resolution nuclear magnetic resonance spectroscopy.Bonk, Fábio Aurélio 16 November 2001 (has links)
O silicato de cálcio hidratado (C-S-H) é o componente responsável pela resistência mecânica dos cimentos usados na construção civil. Neste trabalho foi caracterizada a evolução da reação de hidratação e as propriedades estruturais das fases resultantes da hidratação da escória de alto forno granulada (EAF). Este tipo de cimento é um potencial candidato para substituir os materiais convencionais, apresentando vantagens relativas ao menor custo energético de produção e a redução do impacto ambiental. Devido à menor reatividade da EAF com água, é necessário a adição de substâncias ativadoras alcalinas de modo geral em baixa concentração. Neste trabalho foi caracterizado o efeito sobre a sua reatividade e as propriedades estruturais dos produtos da reação (C-S-H e aluminatos de cálcio hidratados) de quatro tipos de misturas ativadoras contendo hidróxido de sódio, silicato de sódio e/ou hidróxido de cálcio (CH). As quantidades alcalinas resultantes das misturas usadas nas pastas foram: 5%Na2O, 5% Na2O-2,5%CH, 5% Na2O -7,5%SiO2 e 5% Na2O -2,5%CH- 7,5% SiO2. A técnica experimental utilizada foi a Ressonância Magnética Nuclear (RMN) de alta resolução no estado sólido de 29Si, 27Al e 23Na. Os resultados indicaram diferenças na cinética da reação no estágio tardio (tempos na faixa de 3 dias até 120 dias), na quantidade e nas características estruturais das fases aluminatos de cálcio e do C-S-H, dependentes da presença de SiO2 na mistura ativadora. A inclusão de Ca(OH)2 tem efeitos de magnitude consideravelmente menor sobre estes parâmetros. Foi observada uma correspondência excelente entre as diferenças estruturais observadas por RMN e o comportamento da resistência mecânica do material. / Calcium Silicate Hydrate (C-S-H) is the component responsible for mechanical resistance of cementitious materials. In this work, a characterization of the evolution of the hydration reaction in granulated blast-furnace slag (bfs) is presented. Also, the structural properties of the reaction products is studied as a function of time, during the late period of the process. This kind of cement is a potential material to replace the conventional Portland in several applications, having several relative advantages regarding to energetic cost and impact on the environment. To overcome the less hydraulic reactivity of gbs respect to Portland, it is generally necessary the addition of small amount of alkaline compounds, called activators, to improve the speed and extension of the reaction. The behavior of four different activator mixtures containing sodium hydroxide, sodium silicate and/or calcium hydroxide (CH) were considered, at fixed amount alkali 5% Na2O, 5% Na2O -2,5% Ca(OH)2, 5% Na2O -7,5% SiO2 and Na2O -2,5% Ca(OH)2- 7,5% SiO2. The hydration kinetics and structural properties of the hydration products, C-S-H and calcium aluminate hydrates, were probed by means of solid-state high resolution Nuclear Magnetic Resonance (NMR) of 29Si, 27Al and 23Na nuclei. Results showed differences in hydration evolution and structural properties depending strongly on the presence of SiO2 in the mixture. On the other hand, Ca(OH)2 produced only marginal effects on the reaction. An excellent correlation was observed between the structural differences and the mechanical response of the material as a function of the hydration time.
|
114 |
Developing a water treatment system for Subsea Gas processing plantHoner Badi M Nazhat, Dana January 2006 (has links)
The petroleum industry is currently moving to meet the ever-rising demand for oil and gas production. As onshore fields become depleted and decline in production, exploration and production companies have started venturing further offshore. To support this activity, there is need for new subsea production technologies to develop deepwater and ultra deepwater fields.Woodside Hydrocarbon Research Facility (WHRF) at Curtin University of Technology is working on natural gas dehydration processing using gas hydrate technology. Through the studies, a novel gas dehydration process has been developed and now proposed for subsea application. Natural gas dehydration processes generate both a treated dry gas stream and a waste stream of condensate consisting of both hydrocarbons and water. This condensate can be reinjected to the reservoir formation but this is not always economic or practical. Availability of an alternative means of treatment and disposal of the condensate would be advantageous. This study aims to investigate and to provide a basis for the design of such an alternative scheme by constructing a floating separator for the treatment and disposal of waste condensate from subsea dehydration stage.A model was developed to simulate the process of evaporation of condensate from the proposed floating separator. The calculations were performed taken into account zero wind speed and an ambient temperature around 34 C. The simulation results showed that condensate skimming time was found to be 15 days for flowrate (Qin) of 100 bbd associated with specific separator diameter and total height dimensions. By considering the ratio of diameter to total height of 2.5, the floating separator was designed to enhance the evaporation rate and to get overall structure stability due to the mechanical restrictions that might be encountered in the sea.
|
115 |
Modélisation théorique et expérimentale du mécanisme de conduction protonique dans un clathrate hydrate ioniqueBedouret, Laura 25 January 2013 (has links) (PDF)
Ce travail de thèse présente les résultats obtenus lors de l'étude des mécanismes élémentaires à l'origine de la forte conduction protonique mesurée dans le cas de clathrates hydrates d'acides forts. Une méthodologie combinant diffusion neutronique, résonance magnétique nucléaire et simulation de dynamique moléculaire "ab-initio" a permis de modéliser les différents processus dynamiques impliqués, se produisant sur des temps allant de la nanoseconde à la femtoseconde. Le modèle proposé explique la forte conduction de ces systèmes aqueux par la délocalisation à longue distance de leurs protons résultant d'un mécanisme de type Grotthuss gouverné par la relaxation des molécules aqueuses environnant les protons en excès.
|
116 |
Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic DataMurad, Idris 2009 May 1900 (has links)
Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins.
Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting.
We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ.
Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.
|
117 |
Mechanisms of Organic-inorganic Interactions in Soils and Aqueous Environments Elucidated using Calorimetric TechniquesHarvey, Omar R. 2010 May 1900 (has links)
Organic matter is ubiquitous in the environment and exists in many different forms. Reactions involving organic matter are diverse and many have significant economic and environmental implications. In this research, calorimetric techniques were used to study organic- inorganic reactions in two different systems. The primary objectives were to elucidate potential mechanism(s) by which: (i) natural organic matter (NOM) influences strength development in lime-stabilized soils, and; (ii) plant-derived biochars reacts with cations in aqueous environments.
Natural organic matter influenced strength development in lime-stabilized soils through the direct inhibition of the formation of pozzolanic reaction products. The degree of inhibition was dependent mainly on the type of pozzolanic reaction product, and the amount and source of organic matter. The formation of the pozzolanic reaction product, calcium silicate hydrate II (CSH2) was less affected by NOM, than was the formation of CSH1. For a given pozzolanic product, the inhibition increased with NOM content. The effect of organic matter source followed the order fulvic acid> humic acid> lignite. Formation of CSH pozzolanic reaction products decreased by 50-100%, 20-80% and 20-40% in the presence of ?2% fulvic acid, humic acid and lignite, respectively.
Cation interactions with plant-derived biochars were complex and depended both on the nature of the cation and biochar surface properties. Reactions involving the alkali cation, K+; occurred via electrostatic ion exchange, on deprotonated functional groups located on the biochar surface and; were exothermic with molar heats of reaction (?Hads) between -3 and -8 kJ mol-1. In contrast, reactions involving the transition metal cation, Cd2+ were endothermic with delta Hads between +10 and +30 kJ mol-1. Reaction mechanism(s) for Cd2+ varied from ion exchange/surface complexation in biochars formed at <350 oC, to an ion exchange/surface complexation/diffusion-controlled mechanism in biochars formed at >/=350 oC. For a given cation, differences in sorption characteristics were attributable to temperature-dependent or plant species dependent variations in the properties of the biochars.
|
118 |
MetalKarakoc, Nihan 01 February 2009 (has links) (PDF)
This study aims synthesis of metal/polymer one dimensional nanostructures by micelle formation, reduction, and electrospinning route, and to analyze the morphological characteristics of composite nanofibers. The study was carried out in three main steps. First, the reverse micelle structures were established between the anionic surfactant and the metal ion. The surfactant acts as an agent to bind metal ions together so that the arrangements of metal ions can be controlled in the solution. As the surfactant concentration increases, reverse micelles grow and reverse wormlike micelle structures are observed. Wormlike micelles are elongated semi flexible aggregates which form a spherocylinder form repeating units. Metal ions are in the core and surrounded with the surfactant. The polymer attached to the wormlike structure acts as a shield and prevents phase separation in a hydrophilic medium. Different polymer and surfactant concentrations were tried to determine the optimum polymer and surfactant concentrations for reverse micelle formation. The size analyses of the reverse micelle structures were done by dynamic light scattering technique. In the second step, metal ions in the micelles were reduced by using hydrazine hydrate to obtain metal cores in the center of wormlike micelles. Finally, electrospinning was carried at room temperature and in air atmosphere. The characterization of nano composites was done by Scanning Electron Microscopy.
It was found that the size of the reverse micelle structures affects the distribution of metal nano partices in polymer nano fibers. In order to distribute the metal nano particles homogeneously, the optimum size of reverse wormlike micelles was found to be between 420 and 450 nm.
|
119 |
Gas production from hydrate-bearing sedimentsJang, Jaewon 08 July 2011 (has links)
Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. The unique behavior of hydrate-bearing sediments requires the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Hydraulic conductivity decreases with increasing variance in pore size distribution; while spatial correlation in pore size reduces this trend, both variability and spatial correlation promote flow focusing. Invading gas forms a percolating path while nucleating gas forms isolated gas bubbles; as a result, relative gas conductivity is lower for gas nucleation than for gas invasion processes, and constitutive models must be properly adapted for reservoir simulations. Physical properties such as gas solubility, salinity, pore size, and mixed gas conditions affect hydrate formation and dissociation; implications include oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations. High initial hydrate saturation and high depressurization favor gas recovery efficiency during gas production from hydrate-bearing sediments. Even a small fraction of fines in otherwise clean sand sediments can cause fines migration and concentration, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.
|
120 |
Crystal Engineering of Multi-Component Crystal Forms: The Opportunities and Challenges in DesignClarke, Heather Dawn Marie 01 January 2012 (has links)
There is heightened interest to diversify the range of crystal forms exhibited by active pharmaceutical ingredients (APIs) in the pharmaceutical industry. The crystal form can be regarded as the Achilles' heel in the development of an API as it directly impacts the physicochemical properties, performance and safety of the API. This is of critical importance since the crystal form is the preferred method of oral drug delivery by industry and regulatory bodies. The ability to rationally design materials is a lucrative avenue towards the synthesis of functional molecular solids with customized physicochemical properties such as solubility, bioavailability and stability. Pharmaceutical cocrystals have emerged as a new paradigm in pharmaceutical solid form development because they afford the discovery of novel, diverse crystal forms of APIs, generate new intellectual property and modify physicochemical properties of the API. In addition, pharmaceutical cocrystals are amenable to design from first principles of crystal engineering.
This dissertation focuses on the crystal engineering of multi-component crystal forms, in particular pharmaceutical cocrystals and crystalline hydrates. It addresses: (i) the factors involved in the selection of cocrystal formers (ii) design strategies for APIs that exhibit complexity, (iii) the role of water molecules in the design of multi-component crystal forms and (iv) the relationship between the crystal structure and thermal stability of crystalline hydrates.
In general, cocrystal former libraries have been limited to pharmaceutically acceptable substances. It was investigated to expand this library to include substances with an acceptable toxicity profile such as nutraceuticals. In other words, can nutraceuticals serve as general purpose cocrystals formers? The model compounds, gallic acid and ferulic acid, were selected since they possess the functional moieties carboxylic acids and phenols, that are known to form persistent supramolecular synthons with complementary functional groups such as basic nitrogen and amides. The result yielded pairs of cocrystals and revealed the hierarchical nature of hydrogen bonding between complementary functional groups.
In general, pharmaceutical cocrystals have been designed by determining the empirical guidelines regarding the hierarchy of supramolecular synthons. However, this approach may be inadequate when considering molecules that are complex in nature, such as those having a multiplicity of functional groups and/or numerous degrees of conformational flexibility. A crystal engineering study was done to design multi-component crystal forms of the atypical anti-psychotic drug olanzapine. The approach involved a comprehensive analysis and data mining of existing crystal structures of olanzapine, grouped into categories according to the crystal packing exhibited. The approach yielded isostructural, quaternary multi-component crystal forms of olanzapine. The crystal forms consist of olanzapine, the cocrystal former, a water molecule and a solvate.
The role of water molecules in crystal engineering was addressed by investigating the crystal structures of several cocrystals hydrates and their related thermal stability. The cocrystal hydrates were grouped into four categories based upon the thermal stability they exhibit and it was concluded that no structure/stability correlations exist in any of the other categories of hydrate. A Cambridge Structural Database (CSD) analysis was conducted to examine the supramolecular heterosynthons that water molecules exhibit with two of the most relevant functional groups in the context of active pharmaceutical ingredients, carboxylic acids, and alcohols. The analysis suggested that there is a great diversity in the supramolecular heterosynthons exhibited by water molecules when they form hydrogen bonds with carboxylic acids or alcohols. This finding was emphasized by the discovery of two polymorphs of gallic acid monohydrate to it the first tetramorphic hydrate for which fractional coordinates have been determined. Analysis of the crystal structures of gallic acid monohydrate polymorphs revealed that forms I and III exhibit the same supramolecular synthons but different crystal packing and forms II and IV exhibit different supramolecular synthons. Therefore, the promiscuity of water molecules in terms of their supramolecular synthons and their unpredictable thermal stability makes them a special challenge in the context of crystal engineering.
|
Page generated in 0.0508 seconds