Spelling suggestions: "subject:"[een] HYDRATE"" "subject:"[enn] HYDRATE""
121 |
RAMAN STUDY OF THE METHANE + TBME MIXED HYDRATE IN A DIAMOND ANVILEnglezos, Peter, Desgreniers, Serge, Ripmeester, John A., Klug, Dennis, Susilo, Robin 07 1900 (has links)
It is well known that methane hydrate undergoes several phase transformations at high pressures.
At room temperature and low to moderate pressure, methane and water form a stable cubic
structure I (sI) hydrate that is also known as MH-I. The structure is transformed to a hexagonal
phase (sH/MH-II) above 1.0GPa. Another phase transformation occurs above 1.9GPa where the
filled ice structure (MH-III) is stable up to 40 GPa before a new high pressure phase transition
occurs. Experiments at such high pressures have to be performed in a diamond anvil cell (DAC).
Our main interest, though, is to form sH methane hydrate at a lower pressure than reported in
previous studies but with some methane in the large cages consequently increasing the methane
content. This can be accomplished by introducing the molecules of the large hydrate forming
substance (tert-butyl methyl ether/TBME) at a concentration slightly below the stoichiometric
amount as suggested by molecular dynamics simulations. In this study we have synthesized
mixed methane hydrate of sI and sH and loaded the clathrate with methane into several DACs.
Raman spectra were collected at room temperature and pressures in the range of 0.1 to 11.3 GPa.
The existence of sH methane hydrate was observed down to 0.2 GPa. However, the existence of
methane in the large cages was visible only at pressure higher than 1.0 GPa. The excess methane
in the system apparently destabilizes the sH clathrate at pressure below 1.0 GPa as it transforms
to sI clathrate.
|
122 |
DYNAMIC LIFETIMES OF CAGELIKE WATER CLUSTERS IMMERSED IN LIQUID WATER AND THEIR IMPLICATIONS FOR HYDRATE NUCLEATION STUDIESGuo, Guang-Jun, Zhang, Yi-Gang, Li, Meng, Wu, Chang-Hua 07 1900 (has links)
Recently, by performing molecular dynamics simulations in the methane-water system, we have measured the static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules [J. Phys. Chem. C, 2007, 111, 2595]. In this study, we measure the dynamic lifetimes of CLWCs with permitting such water exchanges. It is found that the dynamic lifetimes of CLWCs are not less than the static lifetimes previously obtained, and their ratio increases with the lifetime values. The results strengthen that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. The implications of this study for hydrate nucleation are discussed.
|
123 |
TWELVE YEARS OF LABORATORY AND FIELD EXPERIENCE FOR POLYETHER POLYAMINE GAS HYDRATE INHIBITORSPakulski, Marek, Szymczak, Steve 07 1900 (has links)
The chemical structure of polyether amines (PEA), mainly electron donating multiple oxygen and
nitrogen atoms as well as active hydrogen atoms, make such compounds actively participating in
the formation of hydrogen bonds with surrounding molecules. Hydrophobic polypropylene
glycol functionality gives PEA's properties of multi-headed surfactants having hydrophilic amine
groups. These groups have a strong affinity for water molecules, ice and hydrate crystals. Such
PEA compounds have been known for several years. However, the hydrate inhibition properties
of PEA’s were only discovered about twelve years ago. The first discovery stimulated more
research in laboratories and led to practical applications for hydrate inhibition in gas fields. An
interesting property of PEAs is their synergistic effect on hydrate inhibition when applied
concurrently with polymeric kinetic hydrate inhibitors (KHI) or thermodynamic inhibitors (THI).
The combination inhibitors are better inhibitors than a single component one. Quaternized
polyether diamines are efficient antiagglomerant (AA) hydrate inhibitors while different
derivatization can produce dual functionality compounds, i.e. corrosion inhibitors/gas hydrate
inhibitors (CI/GHI). With all of this versatility, PEAs found application for hydrate inhibition in
oil and gas fields onshore and offshore in production, flowlines and completion. The PEAs have
an excellent record in protecting gas-producing wells from plugging with hydrates. (Final corrected copy of ICGH paper 5347)
|
124 |
GUAP3 SCALE DISSOLVER AND SCALE SQUEEZE APPLICATION USING KINETIC HYDRATE INHIBITOR (KHI)Clark, Len. W., Anderson, Joanne, Barr, Neil, Kremer, Egbert 07 1900 (has links)
The use of Kinetic Hydrate Inhibitors (KHI) is one of the optimum methods employed to control gas hydrate formation issues and provide flow assurance in oil and gas production systems. The application of this technology has several advantages to operators, including significant cost savings and extended life of oil and gas systems. This paper will highlight a specific case where a Major operator in the North Sea (UK sector) significantly reduced the cost of well intervention operations by applying a KHI in a subsea gas lift line. Considerable cost savings were realized by reducing volume of chemical required and this enabled the application to be performed from the FPSO eliminating the need for a dedicated Diving Support Vessel (DSV). Furthermore, the application of KHI also reduced manual handling and chemical logistics usually associated with this particular treatment. In order to prevent mineral scale deposition occurring in downhole tubing and near well bore and in the formation; scale inhibitor squeeze applications are standard practice. For subsea wells the fluids can be pumped down in to the well via gas lift lines. However, upon completion of previous scale squeeze operations at this particular location, hydrate formation was observed when a mixture of MEG and water was used following interventions via the gas lift line. By applying 1% KHI with a mixture of MEG and Water, the well was brought back into production following scale squeeze operations without hydrate formation occurring.
|
125 |
A LOW SYMMETRY FORM OF STRUCTURE H CLATHRATE HYDRATERipmeester, John A., Ratcliffe, Christopher I., Udachin, Konstantin A. 07 1900 (has links)
In this paper we report a low symmetry version of structure H hydrate that results from the hexagonal form on cooling below 167 K. Phase changes with temperature in the common clathrate hydrates structural families I, II and H have not been observed before, except in doped systems where ordering transitions take place or in the structure I hydrate of trimethylene oxide where the guest molecule dipoles are known to order. Since there is an inverse relationship between the effect of temperature and pressure on ices, it may well be that the low symmetry form reported at low temperature can also be reached by applying high pressure, and that in fact some of the observed high pressure phases are lower symmetry versions of hexagonal sH.
|
126 |
CRITICAL GUEST CONCENTRATION AND COMPLETE TUNING PATTERN APPEARING IN THE BINARY CLATHRATE HYDRATESLee, Jong-won, Park, Jeasung, Ripmeester, John A., Kim, Do-Youn, Lee, Huen, Cha, Jong-Ho 07 1900 (has links)
Previously we have suggested the concept of tuning hydrate compositions which makes it
possible to increase the gas storage capacity of binary hydrates. Herein, we report for the first
time the existence of a critical guest concentration (CGC) and establish the complete tuning
pattern that appears to exist in binary hydrates, including the water-soluble hydrate formers
(promoters) and water insoluble guests,. The first attempt to verify the new features of clathrate
hydrate compositions is executed on the binary hydrate of CH4 + THF and involves a detailed
examination of the guest distribution by spectroscopic methods. THF molecules by themselves
form sII hydrate from a completely miscible aqueous solution, and in this structure, because of
their size, THF molecules occupy only the large 51264 cages. The CGC value appears to depend
largely on the chemical nature of the liquid guest component participating in the binary hydrate
formation. The present experimental findings on the existence of critical guest concentration and
the complete tuning phenomenon can be expected to make a meaningful contribution to both
inclusion chemistry and a variety of hydrate-based fields.
|
127 |
RAMAN SPECTROSCOPIC OBSERVATIONS ON THE STRUCTURAL CHARACTERISTICS AND DISSOCIATION BEHAVIOR OF METHANE HYDRATE SYNTHESIZED IN SILICA SANDS WITH VARIOUS SIZESLiu, Changling, Ye, Yuguang, Zhang, Xunhua, Lu, Hailong, Ripmeester, John A. 07 1900 (has links)
Raman spectroscopic observations of the characteristics and dissociation of methane hydrate were carried out on hydrates synthesized in silica sands with particle sizes of 53-75 μm, 90-106 μm, 106-150 μm, and 150-180 μm. The results obtained indicate that methane hydrates formed in silica sands had similar characteristics regarding cage occupancy and hydration number (5.99) to bulk hydrate, indicative of no influence of particle size on hydrate composition. During hydrate dissociation, the change in average intensity ratio of large to small cages were generally consistent with that of bulk hydrate but dropped dramatically after a certain time, and this turning point seems to be related to the particle size of silica sands.
|
128 |
THERMODYNAMIC AND SPECTROSCOPIC ANALYSIS OF TERTBUTYL ALCOHOL HYDRATE: APPLICATION FOR THE METHANE GAS STORAGE AND TRANSPORTATIONPark, Youngjune, Cha, Minjun, Shin, Woongchul, Cha, Jong-Ho, Lee, Huen, Ripmeester, John A. 07 1900 (has links)
Recently, clathrate hydrate has attracted much attention because of its energy gas enclathration
phenomenon. Since energy gas such as methane, ethane, and hydrogen could be stored in solid
hydrate form, clathrate hydrate research has been considerably focused on energy gas storage and
transportation medium. Especially, methane hydrate, which is crystalline compound that are
formed by physical interaction between water and relatively small sized guest molecules, can
contain about as much as 180 volumes of gas at standard pressure and temperature condition. To
utilize gas hydrate as energy storage and transportation medium, two important key features:
storage capacity and storage condition must be considered. Herein, we report the inclusion
phenomena of methane occurred on tert-butyl alcohol hydrate through thermodynamic
measurement and spectroscopic analysis by using powder X-ray diffractometer, and 13C solidstate
NMR. From spectroscopic analysis, we found the formation of sII type (cubic, Fd3m)
clathrate hydrate by introducing methane gas into tert-butyl alcohol hydrate whereas tert-butyl
alcohol hydrate alone does not form clathrate hydrate structure. Under equilibrium condition,
pressure-lowering effect of methane + tert-butyl alcohol double hydrate was also observed. The
present results give us several key features for better understanding of inclusion phenomena
occurring in the complex hydrate systems and further developing methane or other gas storage
and transportation technique.
|
129 |
A MODELING APPROACH TO HYDRATE WALL GROWTH AND SLOUGHING IN A WATER SATURATED GAS PIPELINENicholas, Joseph W., Inman, Ryan R., Steele, John P.H., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
A hydrate plugging and formation model for oil and gas pipelines is becoming increasingly important as producers continue to push flow assurance boundaries. A key input for any hydrate plugging model is the rate of hydrate growth and the volume fraction of hydrate at a given time. This work investigates a fundamental approach toward predicting hydrate growth and volume fraction in a water saturated gas pipeline.
This works suggests that, in the absence of free water, hydrate volume fraction can be predicted using a wall growth and sloughing model. Wall growth can be predicted using a one-dimensional, moving boundary, heat and mass transfer model. It is hypothesized that hydrate sloughing can be predicted when a coincident frequency exists between hydrate natural frequency and flow induced vibrations over the hydrate surface.
|
130 |
A NOVEL APPROACH TO MEASURING METHANE DIFFUSIVITY THROUGH A HYDRATE FILM USING DIFFERENTIAL SCANNING CALORIMETRYDavies, Simon R., Lachance, Jason W., Sloan, E. Dendy, Koh, Carolyn A. 07 1900 (has links)
The avoidance of hydrate blockages in deepwater subsea tiebacks presents a major technical challenge with severe implications for production, safety and cost. The successful prediction of when and where hydrate plugs form could lead to substantial reductions in the use of chemical inhibitors, and to corresponding savings in operational expenditure. The diffusivity of the gas hydrate former (methane) or the host molecule (water), through a hydrate film is a key property for such predictions of hydrate plug formation. In this paper, a novel application of Differential Scanning Calorimetry is described in which a hydrate film was allowed to grow at a hydrocarbon-water interface for different hold-times. By determining the change in mass of the hydrate film as a function of hold-time, an effective diffusivity could be inferred. The effect of the subcooling, and of the addition of a liquid hydrocarbon layer were also investigated. Finally, the transferability of these results to hydrate growth from water-in-oil emulsions is discussed.
|
Page generated in 0.0499 seconds