• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 35
  • 19
  • 12
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 281
  • 171
  • 111
  • 82
  • 82
  • 82
  • 45
  • 42
  • 29
  • 24
  • 22
  • 22
  • 22
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

MICROMECHANICAL ADHESION FORCE MEASUREMENTS BETWEEN CYCLOPENTANE HYDRATE PARTICLES

Dieker, Laura E., Taylor, Craig J., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Cyclopentane hydrate interparticle adhesion force measurements were performed in pure cyclopentane liquid using a micromechanical force apparatus. Cyclopentane hydrate adhesion force measurements were compared to those of cyclic ethers, tetrahydrofuran and ethylene oxide, which were suspected to be cyclic ether-lean and thus contain a second ice phase. This additional ice phase led to an over-prediction of the hydrate interparticle forces by the capillary bridge theory. The adhesion forces obtained for cyclopentane hydrate at atmospheric pressure over a temperature range from 274-279 K were lower than those obtained for the cyclic ethers at similar subcoolings from the formation temperature of the hydrate. The measured cyclopentane interparticle adhesion forces increased linearly with increasing temperature, and are on the same order of magnitude as those predicted by the Camargo and Palermo rheology model.
92

PRELIMINARY DISCUSSION ON GAS HYDRATE RESERVOIR SYSTEM OF SHENHU AREA, NORTH SLOPE OF SOUTH CHINA SEA

Wu, Nengyou, Yang, Shengxiong, Zhang, Haiqi, Liang, Jinqiang, Wang, Hongbin, Su, Xin, Fu, Shaoying 07 1900 (has links)
Gas hydrate is a very complicated reservoir system characterized of temperature, pressure, gas composition, pore-water geochemical features, and gas sources, gas hydrate distribution within the gas hydrate stability zone. Temperature, pressure and the gas composition of the sediments were suitable for gas hydrate formation in the gas hydrate reservoir system of Shenhu Area, north slope of South China Sea. The high-resolution seismic data and the gas hydrate drilling getting high concentrations of hydrate (>40%) in a disseminated form in foram-rich clay sediment showed that gas hydrate is distributed heterogeneously at all spatial scales in all drill holes, and the hydrate-bearing sediments ranged several ten meters in thickness are located in the lower part of gas hydrate stability zone (GHSZ), just above the bottom of gas hydrate stability zone (BGHSZ). It is likely seem that the methane to crystallize gas hydrate is from in-situ microbial methane.
93

VELOCITY ANALYSIS OF LWD AND WIRELINE SONIC DATA IN HYDRATE-BEARING SEDIMENTS ON THE CASCADIA MARGIN

Goldberg, David, Guerin, Gilles, Malinverno, Alberto, Cook, Ann 07 1900 (has links)
Downhole acoustic data were acquired in very low-velocity, hydrate-bearing formations at five sites drilled on the Cascadia Margin during the Integrated Ocean Drilling Program (IODP) Expedition 311. P-wave velocity in marine sediments typically increases with depth as porosity decreases because of compaction. In general, Vp increases from ~1.6 at the seafloor to ~2.0 km/s ~300 m below seafloor at these sites. Gas hydrate-bearing intervals appear as high-velocity anomalies over this trend because solid hydrates stiffen the sediment. Logging-while-drilling (LWD) sonic technology, however, is challenged to recover accurate P-wave velocity in shallow sediments where velocities are low and approach the fluid velocity. Low formation Vp make the analysis of LWD sonic data difficult because of the strong effects of leaky-P wave modes, which typically have high amplitudes and are dispersive. We examine the frequency dispersion of borehole leaky-P modes and establish a minimum depth (approx 50-100 m) below the seafloor at each site where Vp can be accurately estimated using LWD data. Below this depth, Vp estimates from LWD sonic data compare well with wireline sonic logs and VSP interval velocities in nearby holes, but differ in detail due to local heterogeneity. We derive hydrate saturation using published models and the best estimate of Vp at these sites and compare results with independent resistivity-derived saturations.
94

Multiphase Fluid Flow through Porous Media: Conductivity and Geomechanics

January 2016 (has links)
abstract: The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments. In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments are explored to obtain fitting parameters for semi-empirical equations. Second, immiscible fluid invasion into porous media is investigated to identify fluid displacement pattern and displacement efficiency that are affected by pore size distribution and connectivity. Finally, fluid flow through granular media is studied to obtain fluid-particle interaction. This study utilizes the combined techniques of discrete element method simulation, micro-focus X-ray computed tomography (CT), pore-network model simulation algorithms for gas invasion, gas expansion, and relative permeability calculation, transparent micromodels, and water retention curve measurement equipment modified for hydrate-bearing sediments. In addition, a photoelastic disk set-up is fabricated and the image processing technique to correlate the force chain to the applied contact forces is developed. The results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Fitting parameters are suggested for different hydrate saturation conditions and morphologies. And, a new model for immiscible fluid invasion and displacement is suggested in which the boundaries of displacement patterns depend on the pore size distribution and connectivity. Finally, the fluid-particle interaction study shows that the fluid flow increases the contact forces between photoelastic disks in parallel direction with the fluid flow. / Dissertation/Thesis / Doctoral Dissertation Civil and Environmental Engineering 2016
95

Procédé de séparation par formation sélective d'hydrates de gaz pour la valorisation du biogaz / Gas separation by gas hydrate selective crystallization for the valorization of biogas

Sales Silva, Luiz Paulo 15 December 2016 (has links)
Le biogaz, constitué essentiellement de méthane et de dioxyde de carbone, représente une voie alternative aux sources d’énergies fossiles. Pour être valorisé le mélange doit être séparé dans un procédé de séparation de gaz. Ces dernières années, un nouveau procédé basé sur la formation d'hydrates de gaz (GSHF) a suscité une attention particulière dans la communauté scientifique. Basé sur une transition de phase hydrate – liquide – vapeur conduite en présence de promoteurs thermodynamiques, la purification est supposée demander moins d’énergie et moins de réactifs dangereux pour l’environnement que les procédés chimiques traditionnels comme l’absorption dans des solutions d’amines. Une connaissance des équilibres de phase dans les systèmes eau + gaz + additifs est essentielle à la validation du procédé. Dans ce projet, nous avons étudié quatre promoteurs, le bromure de trétrabutylammonium (TBAB), le bromure de tétrabutylphosphonium (TBPB), l’oxyde de tributylphosphine (TBPO) et le tétrahydropyrane (THP), qui ont pour buts d’abaisser la consommation d'énergie et d’améliorer la cinétique et la sélectivité du procédé. Une partie de ce projet a été consacrée à déterminer les conditions d'équilibre d'hydrates de gaz en présence de ces promoteurs et différentes phases gaz (CO2, CH4 et biogaz simulé). Les méthodes de calorimétrie différentielle à balayage (DSC) ont été appliquées pour mesurer les températures de transition de phase. De nouvelles données d'équilibre de phases ont été déterminées pour les systèmes hydrates de gaz + promoteurs. Dans la deuxième partie du projet, nous avons effectué des mesures quantitatives dans un réacteur instrumenté afin d'évaluer le procédé GSFH pour la valorisation du biogaz. Chaque promoteur a été évalué tant sur le plan de la cinétique (temps, d’induction, vitesse de croissance cristalline) que sur celui de la thermodynamique (quantité de gaz piégé, sélectivité). L'optimisation du programme de formation / dissociation des hydrates a montré d'excellents résultats en termes de cinétique. / Biogas represents an alternative path to fossil energies. It is composed mainly by methane and carbon dioxide. This couple must be separated in a gas separation process. In recent years, the new process based on gas hydrate formation (GSHF) has taken special attention in academic community. Besides, the use of thermodynamic promoters can increase the efficiency of the process. Since GSFH is based on phase transition phenomenon, knowledge about phase equilibria is essential. In this project, we have selected and studied four thermodynamic promoters (tretrabutylammonium bromide / TBAB; tetrabutylphosphonium bromide / TBPB; tributylphosphine oxide / TBPO; tetrahydropyran / THP) that have potential to improve GSFH process of biogas in terms of stability gain (less energy consumption), kinetics and selectivity. One part of this project consisted in determining the gas hydrate equilibrium conditions involving these promoters and the different gas phases (CO2, CH4 and simulated biogas). Differential scanning calorimetry (DSC) methods were applied to measure the phase transition temperatures. Therefore, new phase equilibrium data were determined for the promoter/gas hydrate systems. In the second part of the project, we carried out quantitative measurements in an instrumented reactor in order to evaluate the GSFH process for upgrading biogas. Each promoter was evaluated in kinetics and thermodynamics aspects, such as crystal growth rate, amount of gas trapped into the hydrate phase, and selectivity. The optimization of the hydrate formation / dissociation cycle showed excellent results in terms of kinetics improvement.
96

Natural hydrate-bearing sediments: Physical properties and characterization techniques

Dai, Sheng 27 August 2014 (has links)
An extensive amount of natural gas trapped in the subsurface is found as methane hydrate. A fundamental understanding of natural hydrate-bearing sediments is required to engineer production strategies and to assess the risks hydrates pose to global climate change and large-scale seafloor destabilization. This thesis reports fundamental studies on hydrate nucleation, morphology and the evolution of unsaturation during dissociation, followed by additional studies on sampling and pressure core testing. Hydrate nucleation is favored on mineral surfaces and it is often triggered by mechanical vibration. Continued hydrate crystal growth within sediments is governed by capillary and skeletal forces; hence, the characteristic particle size d10 and the sediment burial depth determine hydrate morphologies in natural sediments. In aged hydrate-bearing sand, Ostwald ripening leads to patchy hydrate formation; the stiffness approaches to the lower bound at low hydrate saturation and the upper bound at high hydrate saturation. Hydrate saturation and pore habit alter the pore size variability and interconnectivity, and change the water retention curve in hydrate-bearing sediments. The physical properties of hydrate-bearing sediments are determined by the state of stress, porosity, and hydrate saturation. Furthermore, hydrate stability requires sampling, handling, and testing under in situ pressure, temperature, and stress conditions. Therefore, the laboratory characterization of natural hydrate-bearing sediments faces inherent sampling disturbances caused by changes in stress and strain as well as transient pressure and temperature changes that affect hydrate stability. While pressure core technology offers unprecedented opportunities for the study of hydrate-bearing sediments, careful data interpretation must recognize its inherent limitations.
97

Mechanisms of formation and dissociation of cyclopentane hydrates / Mécanismes de formation et dissociation d’hydrates de cyclopentane

Martinez de Baños, Maria Lourdes 13 November 2015 (has links)
Les mécanismes de formation et dissociation d’hydrates de cyclopentane (CP), qui forment á pression ambiante et á des températures entre 0ºC et 7ºC, ont été observés dans/sur/proche des gouttes d’eau immergées dans du CP á des échelles qui vont du micron jusqu’au millimètre. Plusieurs techniques d’observation ont été utilisées, telles que la macrophotographie et la microscopie optique en champ clair, par contraste interférentiel différentiel (CID), par fluorescence et par réflectance confocale. Des substrats hydrophiles et hydrophobes ont été utilisés. Dans une première série d’expériences, un procédé millifluidique simple a été mis au point. Il permet de générer, stocker et surveiller simultanément une centaine de gouttelettes de même volume (de l’ordre de μl), régulièrement espacées. Elles sont séparées par la phase ‘invité’ (CP) dans un tuyau en polymère fluoré (PFA) transparent. Chacune d’elles se comporte comme un réacteur indépendant. Une vision sur l’effet mémoire est obtenue en menant des mesures statistiques sur la nucléation des hydrates quand les gouttes d’eau sont refroidies au-dessous de 7°C. Cette méthode permet aussi de visualiser des événements dans des gouttes individuelles, tels que la naissance et la croissance de l’hydrate (surtout lorsqu’un additive tel qu’un inhibiteur est rajouté dans l’eau), ainsi que la formation d’une émulsion de CP dans l’eau pendant la dissociation de l’hydrate. Dans une deuxième série d’expériences, une seule goutte d’eau est posée ou pendue d’un substrat en verre et immergée dans du CP. Elle est observée par microscopie sous des séquences différentes de refroidissement – échauffement. Il a été observé que la cristallisation d’hydrates dépend fortement du sous-refroidissement. Deux nouveaux phénomènes ont été observés:(i) la propagation d’un « halo » d’hydrate le long de l’interface verre/CP depuis la ligne de contact de la goutte d’eau.(ii) cristallisation de l’hydrate dans une émulsion 2D de CP dans l’eau.Les deux types d’outils développés dans cette thèse ouvrent des nouvelles perspectives pour élucider les mécanismes de formation et dissociation d’hydrates en présence d’additives (promoteurs et inhibiteurs) et en présence d’un substrat minéral. Les applications comprennent les hydrates dans des environnements sédimentaires, séparation de gaz, etc. / The mechanisms of formation and dissociation of cyclopentane (CP) hydrates, which form at ambient pressure and temperatures between 0°C and 7°C, have been observed in/on/near water drops immersed in CP at scales ranging from a few nanometers to the millimeter by a variety of techniques including macrophotography and optical microscopy under various modes: bright field, differential interference contrast (DIC), fluorescence and confocal reflectance. The substrates used are either hydrophobic or hydrophilic. In a first series of experiments, a simple millifluidic method is implemented. It allows to generate, store and monitor at the same time almost a hundred of regularly-spaced water droplets of equal volume (in the µl range) separated by the guest (CP) phase in a transparent fluorinated polymeric (PFA) (hydrophobic) tubing, each droplet behaving as an independent reactor for hydrate crystallization. Insights into the ‘memory effect’ are gained by measuring the statistics of hydrate nucleation events in these reactors when chilling below 7°C the water drops. The method also allows the visualization of single-drop events such as hydrate birth and growth, and the formation of a CP-in-water emulsion upon hydrate melting, especially when an additive such as an inhibitor is added to the water. In a second series of experiments, a single water droplet in CP, either sitting or hanging from a glass substrate, is observed by microscopy under various cooling and heating sequences. Hydrate crystallization (nucleation and growth) is observed to strongly depend on subcooling at the water drop/CP interface. Two novel phenomena are visualized in detail:(i) the propagation, from the contact line of the water drop, of a hydrate halo along the glass/CP interface. (ii) hydrate crystallization in a two-dimensional CP-in-water emulsion.The two types of tools developed in this thesis open new perspectives for elucidating the mechanisms of hydrate formation and dissociation in presence of additives (promoters and inhibitors) and in the presence of a mineral substrate. Applications include hydrates in sedimentary environments, flow assurance, gas separation, etc.
98

Étude par microscopie optique de la nucléation, croissance et dissociation des hydrates de gaz / Optical microscopy investigation of gas hydrate nucleation, growth and dissociation processes

Touil, Abdelhafid 19 April 2018 (has links)
La nucléation, la croissance et la dissociation des hydrates de gaz au voisinage d’un ménisque eau – gaz dans des capillaires de verre sont étudiées par vidéo-microscopie et spectroscopie Raman à température, pression, mouillabilité et géométrie du substrat contrôlées. Dans ce travail, deux hydrates simples de structure I (hydrate de CO2 et hydrate de CH4), deux hydrates simples de structure II (N2 et Cyclopentane) et un hydrate double (cyclopentane + CO2) sont examinés. En baissant la température bien au-dessous de 0 °C, i.e., sous un fort sous-refroidissement, tous ces hydrates, excepté l’hydrate de cyclopentane, nucléent sans que la glace soit formée. L’hydrate forme d’abord une croûte polycristalline sur le ménisque eau-molécule invitée (guest). Ensuite, il se propage rapidement à partir de ce ménisque dans l’eau sous forme de fibres ou dendrites et le long de la paroi capillaire sous forme d’une croûte fine et polycristalline appelée ”halo”. Sur un substrat hydrophile, ce halo avance du côté de la phase invitée, alimenté par une couche d’eau entre le halo et la paroi interne du capillaire. Symétriquement, sur un verre hydrophobe (traité au silane), le halo et une couche de la phase invitée se propagent du côté eau. Aucun halo n’est observé sur un substrat de mouillabilité intermédiaire. La croissance et la morphologie du halo d’hydrate et l’épaisseur de sa couche sous-jacente d’eau (ou de phase invitée) dépendent fortement du sous-refroidissement. Grâce au faible volume du capillaire utilisé et à la vitesse rapide de refroidissement, la limite de métastabilité de l’hydrate de CO2 est approchée pour différentes pressions et mouillabilité. Le régime des faibles sous-refroidissements est également étudié : une nouvelle morphologie d’hydrate de CO2 est découverte pour des sous-refroidissements inférieurs à 0,5 °C, constituée d’un cristal creux, générée au niveau du ménisque eau – guest et avançant du côté guest le long du verre, alimenté par une épaisse couche d’eau prise en sandwich entre le verre et ce cristal. Une nouvelle procédure est proposée pour détermination des conditions d’équilibre des hydrates de gaz dans une large plage de température et de pression, y compris l’extension métastable de la ligne triphasique (eau liquide – hydrate – guest) jusqu’à des températures bien inférieures à 0 °C. Enfin, les mécanismes par lesquels le CO2 et le cyclopentane agissent en synergie pour former l’hydrate de structure II sont discutés. / The nucleation, growth and dissociation of gas hydrate across a water – gas meniscus in glass capillaries are investigated by means of video-microscopy and confocal Raman spec- troscopy under controlled temperature, pressure, cooling rate and substrate wettability and geometry. Structure I and II hydrates are examined, with the following guest molecules: CO2, CH4, N2, cyclopentane, and cyclopentane + CO2. By lowering the temperature well below 0 °C, i.e., under strong subcooling, all these hydrates but the cyclopentane hydrate nucleate without forming ice on the liquid water – guest meniscus, which is rapidly covered with a polycrystalline crust. The hydrate then propagates from this meniscus as fast-growing fibers or dendrites in bulk water and as a thin polycrystalline crust, or halo, along the capillary wall. On water-wet substrates, this halo advances on the guest side of the meniscus, fed by a water layer sandwiched between the halo and glass. Symmetrically, on guest-wet (silane-treated) glass, the halo and an underlying guest layer grow on the water side of the interface. No halo is observed on intermediate-wet glass. The hydrate halo growth and morphology and the thickness of its underlying water (or guest) layer strongly depend on subcooling. Thanks to the small capillary volume and the rapid temperature descent, the metastability limit of CO2 hydrate is approached for various pressures and substrate wettabilities. The low subcooling regime is investigated as well: a novel CO2 hydrate morphology is discovered for subcoolings below 0.5 °C, which consist of a hollow hydrate crystal originating from the water – guest meniscus and advancing on the guest side along glass, fed by a thick water layer sandwiched between glass and this crystal. A new procedure is proposed to determine gas hydrate dissociation conditions in a large temperature and pressure range, including the metastable extension of the three-phase (liquid water – hydrate - guest) down to temperatures well below 0 °C. Finally, the mechanisms by which CO2 and cyclopentane synergistically act to form the structure II hydrate are discussed.
99

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
100

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.

Page generated in 0.0594 seconds