Spelling suggestions: "subject:"[een] ION BEAM"" "subject:"[enn] ION BEAM""
221 |
[pt] EFEITOS INDUZIDOS PELA IRRADIAÇÃO COM ÍONS DE MEV E ELÉTRONS DE KEV EM MATERIAIS PREBIÓTICOS: RADIÓLISE E SPUTTERING / [en] MEV ION AND KEV ELECTRON IRRADIATION EFFECTS ON PREBIOTIC MATERIALS: RADIOLYSIS AND SPUTTERINGCINTIA APARECIDA PIRES DA COSTA 06 December 2021 (has links)
[pt] A presença de aminoácidos em cometas e meteoritos levanta questões sobre como estes foram formados em ambientes cósmicos, bem como de que maneira eles foram capazes de sobreviver no espaço sideral; radioresistência é uma informação essencial para prever meias-vidas e avançar os estudos sobre origens da vida. O principal objetivo deste trabalho é determinar, por meio de espectroscopia no infravermelho, as seções de choque de destruição de aminoácidos comuns expostos à radiação de íons e elétrons energéticos. As forças de banda vibracionais (A-values) e a dependência do espectro infravermelho com a temperatura da amostra (10 – 400 K) foram analisadas. Seções de choque de destruição aparente (sigma)d(ap) e rendimentos de sputtering (Y0) para glicina, valina e fenilalanina irradiadas por H+, He+ e Nq+ íons de MeV e elétrons de keV foram medidos. Encontrou-se: i) uma dependência aproximadamente linear entre a seção de choque de destruição aparente e o poder de freamento eletrônico (Se): (sigma)d(ap) = (sigma)d + Y0 /N0 = a Sen (onde n aproximadamente 1) para projéteis de MeV e para amostras à temperatura ambiente; ii) resultados preliminares de σdap para feixes de nitrogênio multi-carregados; e iii) resultados de seção de choque de destruição de valina irradiada por elétrons de keV, bem como sua dependência com a energia de incidência do feixe, e com a espessura e temperatura da amostra. Como contribuição teórica, o modelo CASINO-estendido foi desenvolvido visando descrever a evolução da degradação de matéria orgânica por projéteis carregados, particularmente por feixes de elétrons. Comparadas aos resultados experimentais, as previsões do modelo subestimam o dano causado pelo feixe de elétrons, evidência de que efeitos de sputtering e provavelmente algumas características da amostra (como a estrutura cristalográfica) devem ser incluídos. Como implicações astrofísicas, meias-vidas para valina e fenilalanina irradiadas por raios cósmicos são estimadas em aproximadamente 10 milhões de anos no meio interestelar; da glicina, se irradiadas por vento solar a uma unidade astronômica do Sol, é aproximadamente 3 dias. Visando simular materiais astrofísicos realistas bombardeados por elétrons de keV, a meia-vida de valina envolta por gelos de água e CO2 e depositada sobre silicato é também prevista. / [en] The presence of amino acids in comets and meteorites raises questions about how they have been formed in cosmic environments, as well as how long they can survive in outer space; radioresistance is essential information to predict half-lives and make advances on the origins of life studies. The main objective of the current work is to determine, via infrared spectrometry, destruction cross sections of common amino acids exposed to energetic ion and electron radiation. Before sample irradiation, valine vibrational band strengths and their infrared spectral dependence on temperature (10 – 400 K) were analyzed. Apparent destruction cross sections (sigma)d(ap) and sputtering yields (Y0) for glycine, valine and phenylalanine, irradiated by MeV H+, He+ and Nq+ ions and keV electrons, were measured. From experimental data: i) an approximately linear dependence between the apparent destruction cross section and the electronic stopping power (Se) is found: (sigma)d(ap) = (sigma)d + Y0 /N0 = a Sen (where n approximately 1) for MeV projectiles and for samples at room temperature; ii) (sigma)d(ap) preliminary results relative to multi-charged nitrogen ion beams are discussed; and iii) destruction cross section of valine irradiated by keV electrons, as well as its dependence on incident beam energy, on sample thickness and on sample temperature are presented. As a theoretical contribution, the evolution of organic matter damage by charged projectiles, particularly for electron beams, the CASINO-extended model was developed. When compared to experimental results, the model predictions underestimate the damage caused by electron beams, evidence that sputtering and probably some sample characteristics (as crystallographic structure) are involved. As astrophysical implications, cosmic ray half-lives for valine and phenylalanine are estimated to be about 10 million years in the interstellar medium; solar wind half-life at 1 au from the Sun is approximately 3 days for glycine. Aiming to simulate realistic astrophysical materials bombarded by keV electrons, the half-life of valine embedded into water and CO2 ices over a silicate substrate is also predicted.
|
222 |
Foundations of physical vapor deposition with plasma assistanceGudmundsson, Jon Tomas, Anders, André, von Keudell, Achim 30 November 2023 (has links)
Physical vapor deposition (PVD) refers to the removal of atoms from a solid or a liquid by
physical means, followed by deposition of those atoms on a nearby surface to form a thin film
or coating. Various approaches and techniques are applied to release the atoms including
thermal evaporation, electron beam evaporation, ion-driven sputtering, laser ablation, and
cathodic arc-based emission. Some of the approaches are based on a plasma discharge, while
in other cases the atoms composing the vapor are ionized either due to the release of the
film-forming species or they are ionized intentionally afterward. Here, a brief overview of the
various PVD techniques is given, while the emphasis is on sputtering, which is dominated by
magnetron sputtering, the most widely used technique for deposition of both metallic and
compound thin films. The advantages and drawbacks of the various techniques are discussed
and compared.
|
223 |
Three-Dimensional Microstructure Characterization of Surface-Crystallized Glass CeramicsBusch, Richard 13 November 2023 (has links)
Die dreidimensionale Mikrostruktur, welche bei der Oberflächenkristallisation von Glaskeramiken entsteht, wird mittels einer neuartigen Methode zur Präparation von abgesenkten Probenoberflächen untersucht. Diese Initialkantensektionierungsmethode, welche auf der Erzeugung von Scharten in der Probenoberfläche und anschließender Glanzwinkelionenstrahlerosion basiert, erlaubt das rapide Freilegen von großflächigen Schichten in wohldefinierten Tiefen unterhalb der ursprünglichen Probenoberfläche. In dieser Dissertation werden mehrere Variationen der Technik durch Kombination von Laserablation, Ionenbreit- sowie Ionenfeinstrahlerosion untersucht und miteinander verglichen. Die in Bezug auf Schnittgeometrie und Probengüte relevanten, experimentellen Parameter werden bestimmt und bewertet. Ein Modell zur Beschreibung der zeitlichen Evolution der Probengeometrie während des Erosionsvorgangs wird auf Grundlage von Simulationen und analytischen Näherungen aufgestellt und mit experimentellen Ergebnissen verglichen. Schließlich wird die Initialkantensektionierungsmethode mit Elektronenrückstreubeugung kombiniert um Wachstumseffekte bei der Oberflächenkristallisation von Diopsid- und Ba2TiSi2O8-Fresnoitglaskeramiken zu untersuchen.:1 Introduction
1.1 Motivation
1.2 Aims and Objectives
2 Literature Review
2.1 Sample Preparation for Electron Backscatter Diffraction Studies
2.2 Serial Sectioning Methods
2.3 Microstructure Characterization of Glass Ceramics using EBSD
2.4 Interim Conclusion
3 Theory
3.1 Erosion of a Surface Under Ion Bombardment
3.1.1 Sputtering
3.1.2 Kinetic Theory of Surface Evolution
3.1.3 Numerical Simulation of Surface Erosion
3.1.4 Erosion of a Surface With Initial Notches
3.2 Electron Backscatter Diffraction
3.2.1 Measurement Principle
3.2.2 Representation of Orientations and Texture
4 Methods and Materials
4.1 Sample Preparation and Processing
4.2 Surface Metrology
4.3 Microstructure Analysis
4.4 Materials
5 Erosion of Surfaces With Initial Notches
5.1 Evaluation of Surface Processing Methods
5.1.1 Notch Creation
5.1.2 Terrace Formation by Glancing-Angle Ion Beam Erosion
5.2 Surface Properties in the Terrace Region
5.2.1 Terrace Roughness
5.2.2 Ion Beam Induced Amorphization
5.3 Evolution of Surface Geometry
5.3.1 Linear Model
5.3.2 Simulations
5.3.3 Experimental Results
5.4 Discussion
5.4.1 Sample Processing
5.4.2 Sample Quality
5.4.3 Kinetic Model of Surface Evolution
6 Depth-Resolved Microstructure Characterization Using Initial Notches
6.1 Diopside
6.2 Ba2TiSi2O8 fresnoite (BTS)
6.3 Discussion
6.3.1 Methodological Aspects of Initial Notch Sectioning
6.3.2 Microstructure Analysis on Surface-Crystallized Glass Ceramics
7 Summary and Outlook / Three-dimensional microstructures resulting from surface crystallization of glass ceramics are studied using a novel sample sectioning method. Based on the creation of notches on the sample surface and subsequent glancing-angle ion beam erosion, initial notch sectioning enables the rapid excavation of large subsurface layers at well-defined depths. In this thesis, several variations of this technique using different combinations of laser ablation, broad and focused ion beam erosion are realized and compared to each other. Relevant parameters controlling the section geometry and quality are determined. A model of the surface evolution kinetics is developed using simulations and analytical estimates, which is compared to experimental results. Finally, initial notch sectioning in combination with electron backscatter diffraction is applied to elucidate growth phenomena in the surface crystallization of diopside and Ba2TiSi2O8 fresnoite glass ceramics.:1 Introduction
1.1 Motivation
1.2 Aims and Objectives
2 Literature Review
2.1 Sample Preparation for Electron Backscatter Diffraction Studies
2.2 Serial Sectioning Methods
2.3 Microstructure Characterization of Glass Ceramics using EBSD
2.4 Interim Conclusion
3 Theory
3.1 Erosion of a Surface Under Ion Bombardment
3.1.1 Sputtering
3.1.2 Kinetic Theory of Surface Evolution
3.1.3 Numerical Simulation of Surface Erosion
3.1.4 Erosion of a Surface With Initial Notches
3.2 Electron Backscatter Diffraction
3.2.1 Measurement Principle
3.2.2 Representation of Orientations and Texture
4 Methods and Materials
4.1 Sample Preparation and Processing
4.2 Surface Metrology
4.3 Microstructure Analysis
4.4 Materials
5 Erosion of Surfaces With Initial Notches
5.1 Evaluation of Surface Processing Methods
5.1.1 Notch Creation
5.1.2 Terrace Formation by Glancing-Angle Ion Beam Erosion
5.2 Surface Properties in the Terrace Region
5.2.1 Terrace Roughness
5.2.2 Ion Beam Induced Amorphization
5.3 Evolution of Surface Geometry
5.3.1 Linear Model
5.3.2 Simulations
5.3.3 Experimental Results
5.4 Discussion
5.4.1 Sample Processing
5.4.2 Sample Quality
5.4.3 Kinetic Model of Surface Evolution
6 Depth-Resolved Microstructure Characterization Using Initial Notches
6.1 Diopside
6.2 Ba2TiSi2O8 fresnoite (BTS)
6.3 Discussion
6.3.1 Methodological Aspects of Initial Notch Sectioning
6.3.2 Microstructure Analysis on Surface-Crystallized Glass Ceramics
7 Summary and Outlook
|
224 |
3C-SiC Multimode Microdisk Resonators and Self-Sustained Oscillators with Optical TransductionZamani, Hamidreza 03 June 2015 (has links)
No description available.
|
225 |
Electronic and Optical Properties of Defects at Metal-ZnO Nanowire ContactsCox, Jonathan Wesley 25 May 2017 (has links)
No description available.
|
226 |
Two phase magnetoelectric epitaxial composite thin filmsYan, Li 07 January 2010 (has links)
Magnetoelectricity (ME) is a physical property that results from an exchange between polar (electric dipole) and spin (magnetic dipole) subsystem: i.e., a change in polarization (P) with application of magnetic field (H), or a change in magnetization (M) with applied electric field (E). Magnetoelectricity can be found both in single phase and composite materials. Compared with single phase multiferroic materials, composite multiferroics have higher ME effects. Through a strictive interaction between the piezoelectricity of the ferroelectric phase and the magnetostriction of the ferromagnetic phase, said multiferroic composites are capable of producing relatively large ME coefficients.
This Dissertation focused on the deposition and characterization of two-phase composite magnetoelectric thin films. First, single phase ferroelectric thin films were studied to improve the multiferroic properties of the composite thin films. Then structural, ferroelectric, ferromagnetic, and magnetoelectric properties of composite thin films were researched. Finally, regular nano-array composite films were deposited and characterized.
First, for single phase ferroelectric thin films, the phase stability was controlled by epitaxial engineering. Because ferroelectric properties are strongly related to their crystal structure, it is necessary to study the crystal structures in single phase ferroelectric thin films. Through constraint of the substrates, the phase stability of the ferroelectric thin films were able to be altered. Epitaxial thin-layers of Pb(Fe1/2Nb1/2)O3 (or PFN) grown on (001), (110), and (111) SrTiO3 substrates are tetragonal, orthorhombic, and rhombohedral respectively. The larger constraint stress induces higher piezoelectric constants in tetragonal PFN thin film. Epitaxial thin-layers of Pb(Zr0.52Ti0.48)O3 (or PZT) grown on (001), (110), and (111) SrTiO3 substrates are tetragonal, monoclinic C, and rhombohedral respectively. Enhanced ferroelectric properties were found in the low symmetry monoclinic phase. A triclinic phase in BFO was observed when it was deposited on tilted (001) STO substrates by selecting low symmetry (or interim) orientations of single crystal substrates.
Then, in two phase composite magnetoelectric thin films, the morphology stability was controlled by epitaxial engineering. Because multiferroic properties are strongly related to the nano-structures of the composite thin films, it is necessary to research the nano-structures in composite thin films. Nano-belt structures were observed in both BaTiO3-CoFe2O4 and BiFeO3-CoFe2O4 systems: by changing the orientation of substrates or annealing condition, the nano-pillar structure could be changed into nano-belts structure. By doing so, the anisotropy of ferromagnetic properties changes accordingly. The multi-ferroic properties and magnetoelectric properties or (001), (110) and (111) self-assembled BiFeO3-CoFe2O4 nano-composite thin film were also measured.
Finally, the regular CoFe2O4-BiFeO3 nano-array composite was deposited by pulsed laser deposition patterned using a focused ion beam. Top and cross-section views of the composite thin film showed an ordered CoFe2O4 nano-array embedded in a BiFeO3 matrix. Multiferroic and magnetoelectric properties were measured by piezoresponse force microscopy and magnetic force microscopy. Results show (i) switching of the magnetization in ferromagnetic CoFe2O4 and of the polarization in ferroelectric BiFeO3 phases under external magnetic and electric field respectively, and (ii) changes of the magnetization of CoFe2O4 by applying an electric field to the BiFeO3 phase. / Ph. D.
|
227 |
Can Hydrodynamic Electrons Exist in a Metal? A Case Study of the Delafossite Metals PdCoO2 and PtCoO2Nandi, Nabhanila 09 August 2019 (has links)
In an electron fluid, both resistive and viscous mechanisms can be present. In systems with perfect translational invariance momentum is a conserved quantity, and as the electrons carry both charge and momentum, the current cannot decay. Predictions from theories at the particle physics-condensed matter physics interface using the `AdS/CFT' correspondence suggest that hydrodynamic charge flow might exist in some exotic metallic states. In the high-Tc cuprates the T-linear resistivity in the strange metal regime is conjectured to be due to hydrodynamic effects.
In this dissertation, I start out drawing a theoretical outline of the hydrodynamic theory of electron transport in solids. In the search for a high purity metal that can host such a hydrodynamic electron transport, we looked at the non-magnetic delafossite oxides PdCoO2 and PtCoO2, which have the highest conductivities of any known oxides, and whose key properties I will review. As the signatures of viscosity can only be realised in transport through boundary scattering, the samples had to be taken down to the mesoscopic limit, where the momentum conserving and relaxing scattering mean free paths of the material are comparable to the channel width. I will discuss the focussed ion beam (FIB) micro-structuring technique that I have implemented to fabricate the mesoscopic devices.
To interpret the transport in the mesoscopic regime, a comprehensive understanding of the bulk transport is first necessary and I will present my measurements of the magnetoresistance and Hall effect in both materials, which show deviations from the predictions of standard models highlighting some intriguing physics even in the bulk limit.
Finally, I will present the data from magnetotransport measurements at the mesoscopic limit. Magnetic field introduces a variable length scale, the cyclotron radius, in the system which can be used to tune through different transport regimes. I will discuss the ballistic and hydrodynamic signatures in the transport that becomes accessible through magnetic field tuning in the mesoscopic samples of the delafossites PdCoO2 and PdCoO2.
|
228 |
Investigations on reactively driven ion beam etching procedures for improvement of optical aluminium surfacesUlitschka, Melanie 30 October 2020 (has links)
Das reaktiv gesteuerte Ionenstrahlätzen von optischen Aluminiumoberflächen bietet einen vielversprechenden Prozessansatz, um Formfehlerkorrektur, Glättung periodischer Drehstrukturen und die Reduzierung von Rauheitsmerkmalen im Ortsfrequenzbereich der Mikrorauheit in einer Technologie zu kombinieren. Diese Arbeit konzentriert sich auf die experimentelle Analyse der niederenergetischen Ionenbestrahlung von einkorn-diamantgedrehten, technischen Aluminiumlegierungen RSA Al6061 und RSA Al905. Die Ionenstrahlbearbeitung unter Verwendung der Prozessgase Sauerstoff und Stickstoff ermöglicht eine direkte Oberflächenformfehlerkorrektur bis zu 1 µm Bearbeitungstiefe unter Beibehaltung der Ausgangsrauheit. Die sich aus dem vorangegangenen Formgebungsverfahren, dem Einkorn-diamantdrehen, ergebende Drehmarkenstruktur schränkt allerdings häufig die Anwendbarkeit dieser Spiegeloberflächen im kurzwelligen Spektralbereich ein. Daher wurde im Rahmen dieser Arbeit ein zweistufiger Prozessablauf entwickelt, um eine weitere Verbesserung der Oberflächenrauheit zu erreichen. Durch die Ionenstrahl-Planarisierungstechnik unter Verwendung einer Opferschicht werden die im hohen Ortsfrequenzbereich liegenden Drehmarken erfolgreich um insgesamt 82 % reduziert. Eine Kombination mit anschließender, direkter Ionenstrahlglättung zur nachfolgenden Verbesserung der Mikrorauigkeit wird vorgestellt. Um die Prozessführung in einem industrietauglichen Rahmen zu etablieren, wurden die experimentellen Untersuchungen mit einer 13,56 MHz betriebenen Hochfrequenz-Ionenquelle durchgeführt, konnten aber auch erfolgreich auf eine Breitstrahl-Ionenquelle vom Typ Kaufman übertragen werden.:Bibliographische Beschreibung iv
Danksagung vi
Table of Contents viii
1 Introduction 1
2 Surface engineering with energetic ions 8
2.1 Ion target interactions during ion beam erosion 8
2.2 Ion beam finishing methods 10
2.2.1 Ion beam figuring 11
2.2.2 Ion beam planarization 12
2.2.3 Ion beam smoothing 14
3 Experimental set-up and analytical methods 15
3.1 Experimental set-up 15
3.2 Kaufman-type broad beam ion source 18
3.3 Materials 19
3.3.1 Aluminium alloy materials 19
3.3.2 Photoresist materials as planarization layer 21
3.4 Surface topography error regimes 22
3.5 Analytical Methods 23
3.5.1 Analysis of surface roughness 23
3.5.1.1 White light interferometry (WLI) 23
3.5.1.2 Atomic force microscopy (AFM) 25
3.5.1.3 Power spectral density (PSD) analysis 27
3.5.2 Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) 29
3.5.3 X-ray photoelectron spectroscopy (XPS) 31
3.5.4 Time of flight- secondary ion mass spectrometry (ToF-SIMS) 32
3.5.5 Reflectometry 34
3.5.6 Photoresist composition 35
3.5.6.1 Attenuated total reflection infrared spectroscopy (ATR-IR) 35
3.5.6.2 Thermogravimetric analysis (TGA) 36
3.5.6.3 Differential scanning calorimetry (DSC) 38
3.5.6.4 Gas chromatography coupled mass spectrometry (GC-MS) 39
4 Surface engineering by reactive ion beam etching 41
4.1 Reactive ion beam etching with nitrogen 41
4.1.1 Dependence of the aluminium alloy composition 42
4.1.2 Ion beam etching of Al905 44
4.2 Local smoothing by reactive ion beam etching 50
4.2.1 Local surface error slope dependent sputter erosion 51
4.2.2 RIBE O2 direct smoothing 56
4.2.2.1 Oxygen finishing at 1.5 keV 56
4.2.2.2 Oxygen finishing at 0.6 keV 62
4.3 Conclusions 66
5 Technological aspects on photoresist preparation for ion beam planarization 69
5.1 Selection of a suitable photoresist 69
5.2 Photoresist application steps 71
5.2.1 DUV exposure of the photoresist layer 72
5.2.2 Postbake: the influence of the amount of organic solvent 73
5.2.3 Postbake: the influence of the baking temperature 74
5.3 Influence of process gas composition 77
5.3.1 Influence on roughness evolution during ion beam irradiation of the photoresist layer 78
5.3.2 Dependency of the process gas on the selectivity 79
5.4 Influence of the ion energy on the selectivity 80
5.5 Ion beam irradiation of the photoresist layer with nitrogen at different material removal depths 81
5.6 Conclusions 82
6 Ion beam planarization of optical aluminium surfaces RSA Al6061 and RSA Al905 84
6.1 Photoresist application on SPDT aluminium alloys 84
6.2 Ion beam planarization 85
6.2.1 Iterative nitrogen processing of RSA Al905 86
6.2.2 Iterative nitrogen processing of RSA Al6061 90
6.3 Ion beam direct smoothing 93
6.3.1 RIBE O2 smoothing of RSA Al905 93
6.3.2 RIBE O2 smoothing of RSA Al6061 97
6.4 Conclusions 101
7 Process transfer to a Kaufman-type broad beam ion source 103
7.1 RIBE machining investigations on RSA Al905 103
7.2 Ion beam planarization of RSA Al6061 106
7.3 Ion beam incidence angle dependent sputtering 107
7.4 Conclusions 113
8 Summary 115
9 Conclusions and Outlook 123
A List of abbreviations 127
B Selected properties of photoresist materials 129
References 131 / Reactively driven ion beam etching of optical aluminium surfaces provides a promising process route to combine figure error correction, smoothing of periodically turning structures and roughness features situated in the microroughness regime within one technology. This thesis focuses on experimental analysis of low-energy ion beam irradiation on single-point diamond turned technical aluminium alloys RSA Al6061 and RSA Al905. Reactively driven ion beam machining using oxygen and nitrogen process gases enables the direct surface error correction up to 1 µm machining depth while preserving the initial roughness. However, the periodic turning mark structures, which result from preliminary device shaping by single-point diamond turning, often limit the applicability of mirror surfaces in the short-periodic spectral range. Hence, during this work a two-step process route was developed to attain further improvement of the surface roughness. Within the ion beam planarization technique with the aid of a sacrificial layer, the turning marks situated in the high spatial frequency range are successfully reduced by overall 82 %. A combination with subsequently applied direct ion beam smoothing procedure to perform a subsequent improvement of the microroughness is presented. In order to establish the process control in an industrial framework, the experimental investigations were performed using a 13.56 MHz radio frequency ion source, but the developed process routes are also successfully transferred to a broad-beam Kaufman-type ion source.:Bibliographische Beschreibung iv
Danksagung vi
Table of Contents viii
1 Introduction 1
2 Surface engineering with energetic ions 8
2.1 Ion target interactions during ion beam erosion 8
2.2 Ion beam finishing methods 10
2.2.1 Ion beam figuring 11
2.2.2 Ion beam planarization 12
2.2.3 Ion beam smoothing 14
3 Experimental set-up and analytical methods 15
3.1 Experimental set-up 15
3.2 Kaufman-type broad beam ion source 18
3.3 Materials 19
3.3.1 Aluminium alloy materials 19
3.3.2 Photoresist materials as planarization layer 21
3.4 Surface topography error regimes 22
3.5 Analytical Methods 23
3.5.1 Analysis of surface roughness 23
3.5.1.1 White light interferometry (WLI) 23
3.5.1.2 Atomic force microscopy (AFM) 25
3.5.1.3 Power spectral density (PSD) analysis 27
3.5.2 Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) 29
3.5.3 X-ray photoelectron spectroscopy (XPS) 31
3.5.4 Time of flight- secondary ion mass spectrometry (ToF-SIMS) 32
3.5.5 Reflectometry 34
3.5.6 Photoresist composition 35
3.5.6.1 Attenuated total reflection infrared spectroscopy (ATR-IR) 35
3.5.6.2 Thermogravimetric analysis (TGA) 36
3.5.6.3 Differential scanning calorimetry (DSC) 38
3.5.6.4 Gas chromatography coupled mass spectrometry (GC-MS) 39
4 Surface engineering by reactive ion beam etching 41
4.1 Reactive ion beam etching with nitrogen 41
4.1.1 Dependence of the aluminium alloy composition 42
4.1.2 Ion beam etching of Al905 44
4.2 Local smoothing by reactive ion beam etching 50
4.2.1 Local surface error slope dependent sputter erosion 51
4.2.2 RIBE O2 direct smoothing 56
4.2.2.1 Oxygen finishing at 1.5 keV 56
4.2.2.2 Oxygen finishing at 0.6 keV 62
4.3 Conclusions 66
5 Technological aspects on photoresist preparation for ion beam planarization 69
5.1 Selection of a suitable photoresist 69
5.2 Photoresist application steps 71
5.2.1 DUV exposure of the photoresist layer 72
5.2.2 Postbake: the influence of the amount of organic solvent 73
5.2.3 Postbake: the influence of the baking temperature 74
5.3 Influence of process gas composition 77
5.3.1 Influence on roughness evolution during ion beam irradiation of the photoresist layer 78
5.3.2 Dependency of the process gas on the selectivity 79
5.4 Influence of the ion energy on the selectivity 80
5.5 Ion beam irradiation of the photoresist layer with nitrogen at different material removal depths 81
5.6 Conclusions 82
6 Ion beam planarization of optical aluminium surfaces RSA Al6061 and RSA Al905 84
6.1 Photoresist application on SPDT aluminium alloys 84
6.2 Ion beam planarization 85
6.2.1 Iterative nitrogen processing of RSA Al905 86
6.2.2 Iterative nitrogen processing of RSA Al6061 90
6.3 Ion beam direct smoothing 93
6.3.1 RIBE O2 smoothing of RSA Al905 93
6.3.2 RIBE O2 smoothing of RSA Al6061 97
6.4 Conclusions 101
7 Process transfer to a Kaufman-type broad beam ion source 103
7.1 RIBE machining investigations on RSA Al905 103
7.2 Ion beam planarization of RSA Al6061 106
7.3 Ion beam incidence angle dependent sputtering 107
7.4 Conclusions 113
8 Summary 115
9 Conclusions and Outlook 123
A List of abbreviations 127
B Selected properties of photoresist materials 129
References 131
|
229 |
3D morphological and crystallographic analysis of materials with a Focused Ion Beam (FIB) / Analyse 3D morphologique et cristallographique des matériaux par microscopie FIBYuan, Hui 15 December 2014 (has links)
L’objectif principal de ce travail est d’optimise la tomographie par coupe sériée dans un microscope ‘FIB’, en utilisant soit l’imagerie électronique du microscope à balayage (tomographie FIB-MEB), soit la diffraction des électrons rétrodiffusés (tomographie dite EBSD 3D). Dans les 2 cas, des couches successives de l’objet d’étude sont abrasées à l’aide du faisceau ionique, et les images MEB ou EBSD ainsi acquises séquentiellement sont utilisées pour reconstruire le volume du matériau. A cause de différentes sources de perturbation incontrôlées, des dérives sont généralement présentes durant l'acquisition en tomographie FIB-MEB. Nous avons ainsi développé une procédure in situ de correction des dérives afin de garder automatiquement la zone d'intérêt (ROI) dans le champ de vue. Afin de reconstruction le volume exploré, un alignement post-mortem aussi précis que possible est requis. Les méthodes actuelles utilisant la corrélation-croisée, pour robuste que soit cette technique numérique, présente de sévères limitations car il est difficile, sinon parfois impossible de se fier à une référence absolue. Ceci a été démontré par des expériences spécifiques ; nous proposons ainsi 2 méthodes alternatives qui permettent un bon alignement. Concernant la tomographie EBSD 3D, les difficultés techniques liées au pilotage de la sonde ionique pour l'abrasion précise et au repositionnement géométrique correct de l’échantillon entre les positions d'abrasion et d’EBSD conduisent à une limitation importante de la résolution spatiale avec les systèmes commerciaux (environ 50 nm)3. L’EBSD 3D souffre par ailleurs de limites théoriques (grand volume d'interaction électrons-solide et effets d'abrasion. Une nouvelle approche, qui couple l'imagerie MEB de bonne résolution en basse tension, et la cartographie d'orientation cristalline en EBSD avec des tensions élevées de MEB est proposée. Elle a nécessité le développement de scripts informatiques permettant de piloter à la fois les opérations d’abrasion par FIB et l’acquisition des images MEB et des cartes EBSD. L’intérêt et la faisabilité de notre approche est démontrée sur un cas concret (superalliage de nickel). En dernier lieu, s’agissant de cartographie d’orientation cristalline, une méthode alternative à l’EBSD a été testée, qui repose sur l’influence des effets de canalisation (ions ou électrons) sur les contrastes en imagerie d’électrons secondaires. Cette méthode corrèle à des simulations la variation d’intensité de chaque grain dans une série d’images expérimentales obtenues en inclinant et/ou tournant l’échantillon sous le faisceau primaire. Là encore, la méthode est testée sur un cas réel (polycritsal de TiN) et montre, par comparaison avec une cartographie EBSD, une désorientation maximale d'environ 4° pour les angles d’Euler. Les perspectives d’application de cette approche, potentiellement beaucoup plus rapide que l’EBSD, sont évoquées. / The aim of current work is to optimize the serial-sectioning based tomography in a dual-beam focused ion beam (FIB) microscope, either by imaging in scanning electron microscopy (so-called FIB-SEM tomography), or by electron backscatter diffraction (so-called 3D-EBSD tomography). In both two cases, successive layers of studying object are eroded with the help of ion beam, and sequentially acquired SEM or EBSD images are utilized to reconstruct material volume. Because of different uncontrolled disruptions, drifts are generally presented during the acquisition of FIB-SEM tomography. We have developed thus a live drift correction procedure to keep automatically the region of interest (ROI) in the field of view. For the reconstruction of investigated volume, a highly precise post-mortem alignment is desired. Current methods using the cross-correlation, expected to be robust as this digital technique, show severe limitations as it is difficult, even impossible sometimes to trust an absolute reference. This has been demonstrated by specially-prepared experiments; we suggest therefore two alternative methods, which allow good-quality alignment and lie respectively on obtaining the surface topography by a stereoscopic approach, independent of the acquisition of FIB-SEM tomography, and realisation of a crossed ‘hole’ thanks to the ion beam. As for 3D-EBSD tomography, technical problems, linked to the driving the ion beam for accurate machining and correct geometrical repositioning of the sample between milling and EBSD position, lead to an important limitation of spatial resolution in commercial softwares (~ 50 nm)3. Moreover, 3D EBSD suffers from theoretical limits (large electron-solid interaction volume for EBSD and FIB milling effects), and seems so fastidious because of very long time to implement. A new approach, coupling SEM imaging of good resolution (a few nanometres for X and Y directions) at low SEM voltage and crystal orientation mapping with EBSD at high SEM voltage, is proposed. This method requested the development of computer scripts, which allow to drive the milling of FIB, the acquisition of SEM images and EBSD maps. The interest and feasibility of our approaches are demonstrated by a concrete case (nickel super-alloy). Finally, as regards crystal orientation mapping, an alternative way to EBSD has been tested; which works on the influence of channelling effects (ions or electrons) on the imaging contrast of secondary electrons. This new method correlates the simulations with the intensity variation of each grain within an experimental image series obtained by tilting and/or rotating the sample under the primary beam. This routine is applied again on a real case (polycrystal TiN), and shows a max misorientation of about 4° for Euler angles, compared to an EBSD map. The application perspectives of this approach, potentially faster than EBSD, are also evoked.
|
230 |
Neuartige Sensoren zur Erfassung von Dehnungen in Faserverbundwerkstoffen (Structural Health Monitoring)Mäder, Thomas 27 January 2015 (has links) (PDF)
Dehnungssensoren werden zur Überwachung von sicherheitsrelevanten Bauteilen, besonders in Bauteilen aus faserverstärkten Polymermatrixverbundwerkstoffen eingesetzt. Durch deren Integration in das Bauteilinnere werden sie vor schädigenden mechanischen sowie korrosiven Einwirkungen geschützt. Dies gewährleistet eine zuverlässige sowie dauerhafte Funktion. Verschiedene Ansätze zur Weiterentwicklung integrierbarer Dehnungssensoren werden international untersucht. Die Verringerung des Sensordurchmessers auf Abmaße im Bereich des Durchmessers von Verstärkungsfasern ist dabei ein bedeutendes Entwicklungsziel. Insbesondere bei der Integration in Bauteile aus faserverstärkten Kunststoffen sorgen zum Durchmesser von Fasern vergleichbare Sensordurchmesser für eine optimale Sensoranbindung. Die Bildung von Harznestern sowie schwächender Unstetigkeiten kann mittels dünner Sensoren verhindert werden. Dies gewährleistet eine artefaktefreie Dehnungsmessung. Drei verschiedene Ansätze für neuartige Dehnungssensoren mit kleinem Querschnitt wurden in dieser Arbeit untersucht. / Strain sensors are used for structural health monitoring issues, certainly in parts with high safety requirements made of fibre-reinforced plastic composites. The integration of these sensors inside the parts protects them against any mechanical and corrosive impact. The sensor functionality can be enhanced by integration. There is a lot of international research effort to further develop integratable strain sensors. Different approaches are currently pursued. This thesis presents the results of investigations on three different approaches for novel strain sensors. The main goal of these investigations was to minimise the sensor diameter down to the diameter of reinforcing fibres. The small diameter allows for an optimum and artefact free integration of the sensors. The formation of resin nests and notches to the material structure can be prevented by integrating sensor with a smaller diameter. The strain measurement and monitoring is enhanced and more reliable then.
|
Page generated in 0.0445 seconds