• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 21
  • 19
  • 16
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[en] LATTICE STRUCTURES DESIGN BASED ON TOPOLOGY OPTIMIZATION: MODELING, ADDITIVE MANUFACTURING, AND EXPERIMENTAL ANALYSIS / [pt] PROJETO DE ESTRUTURAS CELULARES FORMADAS POR REDE DE TRELIÇAS BASEADO EM OTIMIZAÇÃO TOPOLÓGICA: MODELAGEM, MANUFATURA ADITIVA E ANÁLISE EXPERIMENTAL

MARIANA MORAES GIOIA 13 September 2023 (has links)
[pt] Materiais feitos com microestruturas arquitetadas possuem propriedades mecânicas ajustáveis e podem ser usados na obtenção de estruturas leves e, ao mesmo tempo, com máxima rigidez. Em estruturas celulares formadas por rede de treliças, por exemplo, pode-se variar o tipo de topologia e porosidade de modo que o material seja eficientemente distribuído no domínio de projeto. Devido às geometrias complexas destas estruturas, projetá-las usando ferramentas de desenho assistido por computador é uma tarefa desafiadora. Neste trabalho, foi desenvolvida uma modelagem paramétrica no programa Rhinoceros usando a extensão Grasshopper para auxiliar na construção de modelos de sólidos celulares com estrutura interna treliçada de densidade variável. A modelagem paramétrica desenvolvida permite definir a topologia e o diâmetro das barras das treliças que simplificam em muito a geração de modelos de sólidos porosos. Modelos de microestrutura foram gerados e fabricados em poliamida 12 por meio de sinterização seletiva a laser para avaliar se é viável imprimir as treliças a partir dos parâmetros estabelecidos. O problema de uma viga biapoiada com carga concentrada no centro foi resolvido utilizando-se o método de otimização topológica e o campo de densidades foi usado para geração do modelo de densidade variável. Considerando a mesma massa final dos modelos otimizados, modelos com densidade constante foram gerados e fabricados juntamente com os modelos de densidade variável. Foram realizadas análises experimentais por meio de ensaios de flexão em três pontos e os resultados mostram que a solução usando densidade variável tem um grande aumento da rigidez quando comparadas com as soluções com densidade uniforme. / [en] Materials made with architected microstructures present tunable mechanical properties and can be used to obtain light structures and, at the same time, with maximum stiffness. In lattice structures, for example, the type of topology and porosity can be varied so that the material is efficiently distributed in the design domain. Due to the complex geometries of these structures, designing them using computer-aided design tools is a challenging task. In this work, a parametric modeling was developed in the Rhinoceros program using the Grasshopper extension to assist in the construction of models of lattice structures with varying truss diameters. The developed parametric modeling allows defining the topology and the diameter of the truss bars, which greatly simplifies the generation of models of porous solids. Microstructure models were generated and manufactured in polyamide 12 through selective laser sintering to assess whether it is feasible to print the trusses from the established parameters. The problem of a simply supported beam with a concentrated load at the center was solved using the topology optimization method and the density field was used to generate the variable density model. Considering the same final mass of the optimized models, models with constant density were generated and manufactured together with the models with variable density. Experimental analyzes were carried out using three-point bending tests and the results show that the solution using variable density has a large increase in stiffness when compared to solutions with uniform density.
32

Mechanical characterization of functionally graded M300 maraging steel cellular structures

Sampson, Bradley Jay 08 December 2023 (has links) (PDF)
Traditional methods for increasing the energy absorption of a structure involve using a stronger material or increasing the volume of the structure, resulting in a higher cost or additional weight. Additive manufacturing (AM) can be used to maximize the energy absorption of materials with the ability to create complex geometries such as cellular structures. Previous work has shown that the energy absorption of additively manufactured parts can be improved through functionally graded cellular structures; however, this strategy has not been applied to ultra-high strength steel materials. This work characterizes the effect of multiple functional-grading strategies (e.g. uniform, rod-graded, size-graded) on the energy absorption to weight ratio of laser powder bed fusion (L-PBF) produced M300 maraging steel lattice structures. Each structure is designed with the same average relative density to analyze the structures on an equal mass basis, to evaluate manufacturability, mechanical response, and compare experimental results with numerical simulation.
33

Resilience and Toughness Behavior of 3D-Printed Polymer Lattice Structures: Testing and Modeling

Al Rifaie, Mohammed Jamal 21 August 2017 (has links)
No description available.
34

Innovative Bauteilgestaltung mit inneren Strukturen

Mahn, Uwe, Horn, Matthias, Arndt, Jan 24 May 2023 (has links)
Die neuen Fertigungsmöglichkeiten durch die Additive Fertigung ermöglicht es nicht nur topologisch neuartige Bauteile herzustellen, sondern auch Bauteile mit inneren Strukturen zu versehen, die der Bauteilbelastung angepasst sind oder anderen Funktionen Freiräume bieten. Ein Ansatz ist es durchlässige innere Strukturen, z. B. Gitterstrukturen (auch als Lattice Strukturen bezeichnet) einzusetzen und durch die damit geschaffenen großen inneren Flächen eine effiziente Bauteilkühlung zu realisieren. Anhand eines einfachen Beispiels wird durch Simulation und Experiment die Wirkung einer solchen Kühlung gezeigt. Als weiteres Anwendungsbeispiel wird der Einsatz verschiedener innere Strukturen zur festigkeitsgerechten Gestaltung gewichtsoptimierter Bauteile vorgestellt. In beiden Fällen wird die Gestaltung mit Hilfe von FE-Modellen experimentell begleitet. / The new manufacturing possibilities offered by additive manufacturing not only allows to produce topologically novel components, but also enables to provide components with internal structures that are adapted to the component load or offer new possibilities for other functions. One approach is to use permeable internal structures, e. g. lattice structures, to realize efficient component cooling through the large internal surfaces created thereby. The effect of such a cooling is demonstrated by simulations and experiments using a simple example. As a further application example, the use of various internal structures for the strength-oriented design of weight-optimized components will be presented. In both cases the design is experimentally accompanied by FE models.
35

Topology Optimized Unit Cells for Laser Powder Bed Fusion

Boos, Eugen, Ihlenfeldt, Steffen, Milaev, Nikolaus, Thielsch, Juliane, Drossel, Welf-Guntram, Bruns, Marco, Elsner, Beatrix A. M. 22 February 2024 (has links)
The rise of additive manufacturing has enabled new degrees of freedom in terms of design and functionality. In this context, this contribution addresses the design and characterization of structural unit cells that are intended as building blocks of highly porous lattice structures with tailored properties. While typical lattice structures are often composed of gyroid or diamond lattices, this study presents stackable unit cells of different sizes created by a generative design approach tomeet boundary conditions such as printability and homogeneous stress distributions under a given mechanical load. Suitable laser powder bed fusion (LPBF) parameterswere determined forAlSi10Mg to ensure high resolution and process reproducibility for all considered unit cells. Stacks of unit cells were integrated into tensile and pressure test specimens for which the mechanical performance of the cells was evaluated. Experimentally measured material properties, applied process parameters, and mechanical test results were employed for calibration and validation of finite element (FE) simulations of both the LPBF process as well as the subsequent mechanical characterization. The obtained data therefore provides the basis to combine the different unit cells into tailored lattice structures and to numerically investigate the local variation of properties in the resulting structures. / Durch die Einführung der Additiven Fertigung können neue Freiheitsgrade in Bezug auf Gestaltungsfreiheit und Funktionalität erreicht werden. In diesem Zusammenhang adressiert dieser Beitrag das Design und die Charakterisierung struktureller Einheitszellen als Bausteine für hochgradig poröse Gitterstrukturen mit maßgeschneiderten Eigenschaften. Während typische Gitterstrukturen oft auf Gyroid- oder Diamantstrukturen basieren, präsentiert dieser Beitrag stapelbare Einheitszellen unterschiedlicher Größe, die durch einen generativen Designansatz erstellt wurden. Hierdurch sollen verschiedene Randbedingungen wie eine gute Druckbarkeit und homogene Spannungsverteilung unter gegebenen mechanischen Lasten erreicht werden. Um eine hohe Auflösung und Reproduzierbarkeit der Einheitszellen zu erreichen, wurden für den verwendeten Werkstoff AlSi10Mg geeignete Druckparameter für das Laserstrahlschmelzen (LPBF) ermittelt. Stapel von Einheitszellen wurden in Zug- und Druckproben integriert, anhand derer die mechanische Stabilität der Zellen ermittelt wurde. Experimentell bestimmte Materialeigenschaften, die verwendeten Prozessparameter und die Ergebnisse der mechanischen Untersuchungen wurden anschließend für die Kalibrierung und Validierung Finiter Elemente (FE) Simulationen herangezogen, wobei simulationsseitig sowohl der Prozess des Laserstrahlschmelzens als auch die nachgelagerte mechanische Charakterisierung berücksichtigt wurden. Die hier präsentierten Ergebnisse sollen als Basis sowohl für eine gezielte Anordnung der Einheitszellen zu maßgeschneiderten Gitterstrukturen dienen als auch für die numerische Auswertung der lokal variierenden Eigenschaften der somit resultierenden Strukturen.

Page generated in 0.0249 seconds