• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • Tagged with
  • 26
  • 26
  • 11
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Strategic location modelling for reaction vehicles of the private security industry in South Africa

Kellerman, Rikus 08 1900 (has links)
Since the early 1960s location problems have been used throughout various industries and in various countries. During recent years the field of location problems has become increasingly popular due to the fact that it is applicable in real life situations – especially in emergency services such as hospital, police station and ambulance locations to name a few. Despite the fact that location problems are so widely used with great success, it is still not being used to full potential in industries where it can have a major impact. One of these industries is the private security industry in South Africa. This dissertation addresses various mathematical models that can assist the management of privately owned security companies to determine strategic locations for their reaction vehicles, these locations will increase both resource utilization and improve the level of service they provide to customers. These models are used in different scenarios to see how the models adapt to input changes. / Dissertation (MSc)--University of Pretoria, 2014. / Industrial and Systems Engineering / MSc / Restricted
12

SOLVING CONTINUOUS SPACE LOCATION PROBLEMS

Wei, Hu 14 April 2008 (has links)
No description available.
13

Algoritmos para o problema de localização simples baseados nas formulações clássica e canônica / Algorithms to the problem of location based on simple formulations classical and canonical

Dias, Fábio Carlos Sousa January 2008 (has links)
DIAS, Fábio Carlos Sousa. Algoritmos para o problema de localização simples baseados nas formulações clássica e canônica. 2008. 81 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2008. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-06-22T17:13:52Z No. of bitstreams: 1 2008_dis_fcsdias.pdf: 533140 bytes, checksum: 547c9cf8d771e2646884c423f5a39936 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-22T17:16:23Z (GMT) No. of bitstreams: 1 2008_dis_fcsdias.pdf: 533140 bytes, checksum: 547c9cf8d771e2646884c423f5a39936 (MD5) / Made available in DSpace on 2016-06-22T17:16:23Z (GMT). No. of bitstreams: 1 2008_dis_fcsdias.pdf: 533140 bytes, checksum: 547c9cf8d771e2646884c423f5a39936 (MD5) Previous issue date: 2008 / In this work, we study the Simple Plant Location Problem (SPLP). Using its classical mathematical programming formulation and another recently proposed formulation, we develop several algorithms to …nd lower and upper bounds for the problem as well as branch-and-bound algorithms. With the classical formulation, such bounds are obtained via the data correction method and dominance criteria between …xed and transportation costs. We propose a projection of this formulation that has shown to be computationally atractive. Using the new formulation, we propose and prove the correctness of several iterative procedures that attempt to …nd an optimal solution to the problem by solving a sequence of parametric sub-problems, each one obtained by removing some variables and constraints of the original formulation. At each iteration of this process, we can obtain lower and upper bounds. We also apply Lagrangean relaxation to this new formulation in order to get other bounds. We consider several possibilities of relaxing the constraints. In addition, we develop branch-and-bound algorithms based on both formulations and the obtained bounds. We evaluate the computational e¢ ciency of all proposed algorithms with hard test instances from the literature. Computational results are reported and comparisons with other algorithms from the literature are carried out. / Neste trabalho, estudamos o problema de localização simples (SPLP - Simple Plant Location Problem). Usando a formulação matemática clássica e uma outra formulação proposta recentemente, desenvolvemos vários algoritmos para encontrar limites inferiores e superiores, bem como algoritmos tipo branch-and-bound. Com a formulação clássica, tais limites são obtidos utilizando o método de correção de dados e critérios de dominância entre os custos …xos e de transporte. Propomos uma projeção dessa formulação, que se mostrou computacionalmente atrativa. Usando a nova formulação propomos e mostramos a corretude de vários procedimentos iterativos que procuram encontrar uma solução para o problema, resolvendo uma seqüência de subproblemas paramétricos obtidos com a remoção de variáveis e restrições da formulação original. Em cada iteração desse processo, podemos gerar limites inferiores e superiores. Aplicamos ainda relaxação lagrangeana a essa nova formulação para obter outros limites. Analisamos várias possibilidades de relaxação das restrições. Desenvolmento também algoritmos branch-and-bound baseados em ambas as formulações e nos limites obtidos. Avaliamos a e…ciência computacional de todos os algoritmos com instâncias de teste difíceis, disponíveis na literatura. Resultados computacionais e comparações com outros algoritmos da literatura são reportados.
14

Algoritmos para o problema de localizaÃÃo simples baseados nas formulaÃÃes clÃssica e canÃnica / Algorithms to the problem of location based on simple formulations classical and canonical

FÃbio Carlos Sousa Dias 12 September 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, estudamos o problema de localizaÃÃo simples (SPLP - Simple Plant Location Problem). Usando a formulaÃÃo matemÃtica clÃssica e uma outra formulaÃÃo proposta recentemente, desenvolvemos vÃrios algoritmos para encontrar limites inferiores e superiores, bem como algoritmos tipo branch-and-bound. Com a formulaÃÃo clÃssica, tais limites sÃo obtidos utilizando o mÃtodo de correÃÃo de dados e critÃrios de dominÃncia entre os custos …xos e de transporte. Propomos uma projeÃÃo dessa formulaÃÃo, que se mostrou computacionalmente atrativa. Usando a nova formulaÃÃo propomos e mostramos a corretude de vÃrios procedimentos iterativos que procuram encontrar uma soluÃÃo para o problema, resolvendo uma seqÃÃncia de subproblemas paramÃtricos obtidos com a remoÃÃo de variÃveis e restriÃÃes da formulaÃÃo original. Em cada iteraÃÃo desse processo, podemos gerar limites inferiores e superiores. Aplicamos ainda relaxaÃÃo lagrangeana a essa nova formulaÃÃo para obter outros limites. Analisamos vÃrias possibilidades de relaxaÃÃo das restriÃÃes. Desenvolmento tambÃm algoritmos branch-and-bound baseados em ambas as formulaÃÃes e nos limites obtidos. Avaliamos a e…ciÃncia computacional de todos os algoritmos com instÃncias de teste difÃceis, disponÃveis na literatura. Resultados computacionais e comparaÃÃes com outros algoritmos da literatura sÃo reportados. / In this work, we study the Simple Plant Location Problem (SPLP). Using its classical mathematical programming formulation and another recently proposed formulation, we develop several algorithms to …nd lower and upper bounds for the problem as well as branch-and-bound algorithms. With the classical formulation, such bounds are obtained via the data correction method and dominance criteria between …xed and transportation costs. We propose a projection of this formulation that has shown to be computationally atractive. Using the new formulation, we propose and prove the correctness of several iterative procedures that attempt to …nd an optimal solution to the problem by solving a sequence of parametric sub-problems, each one obtained by removing some variables and constraints of the original formulation. At each iteration of this process, we can obtain lower and upper bounds. We also apply Lagrangean relaxation to this new formulation in order to get other bounds. We consider several possibilities of relaxing the constraints. In addition, we develop branch-and-bound algorithms based on both formulations and the obtained bounds. We evaluate the computational e ciency of all proposed algorithms with hard test instances from the literature. Computational results are reported and comparisons with other algorithms from the literature are carried out.
15

Lagrangian-informed mixed integer programming reformulations

Khuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve large-scale instances of combinatorial problems. However, problems constantly gain in complexity and sometimes impose strong constraints on computation times. We must then develop specialised methods to compute heuristic primal solutions to the problem and derive lower bounds on the optimal value, and thus prove the quality of our primal solutions. We propose to guide a reformulation approach for mixed integer programs with Lagrangian relaxations. After the identification of a strong relaxation, a mechanical process leads to a second integer formulation. This reformulation is equivalent to the initial one, but its linear relaxation is equivalent to the strong Lagrangian dual. We will show that the reformulation approach unifies and generalises prior formulations and lower bounding approaches, and that it exposes a simple mechanism to reduce the size of reformulations in return for weaker bounds. Nevertheless, our reformulations are large. We address this issue by solving their linear relaxations with specialised methods. Finally, we apply the reformulation approach to two location problems. This yields novel formulations for both problems; some are very large but, thanks to the aforementioned specialised methods, still practical.
16

Duality for convex composed programming problems

Vargyas, Emese Tünde 20 December 2004 (has links) (PDF)
The goal of this work is to present a conjugate duality treatment of composed programming as well as to give an overview of some recent developments in both scalar and multiobjective optimization. In order to do this, first we study a single-objective optimization problem, in which the objective function as well as the constraints are given by composed functions. By means of the conjugacy approach based on the perturbation theory, we provide different kinds of dual problems to it and examine the relations between the optimal objective values of the duals. Given some additional assumptions, we verify the equality between the optimal objective values of the duals and strong duality between the primal and the dual problems, respectively. Having proved the strong duality, we derive the optimality conditions for each of these duals. As special cases of the original problem, we study the duality for the classical optimization problem with inequality constraints and the optimization problem without constraints. The second part of this work is devoted to location analysis. Considering first the location model with monotonic gauges, it turns out that the same conjugate duality principle can be used also for solving this kind of problems. Taking in the objective function instead of the monotonic gauges several norms, investigations concerning duality for different location problems are made. We finish our investigations with the study of composed multiobjective optimization problems. In doing like this, first we scalarize this problem and study the scalarized one by using the conjugacy approach developed before. The optimality conditions which we obtain in this case allow us to construct a multiobjective dual problem to the primal one. Additionally the weak and strong duality are proved. In conclusion, some special cases of the composed multiobjective optimization problem are considered. Once the general problem has been treated, particularizing the results, we construct a multiobjective dual for each of them and verify the weak and strong dualities. / In dieser Arbeit wird, anhand der sogenannten konjugierten Dualitätstheorie, ein allgemeines Dualitätsverfahren für die Untersuchung verschiedener Optimierungsaufgaben dargestellt. Um dieses Ziel zu erreichen wird zuerst eine allgemeine Optimierungsaufgabe betrachtet, wobei sowohl die Zielfunktion als auch die Nebenbedingungen zusammengesetzte Funktionen sind. Mit Hilfe der konjugierten Dualitätstheorie, die auf der sogenannten Störungstheorie basiert, werden für die primale Aufgabe drei verschiedene duale Aufgaben konstruiert und weiterhin die Beziehungen zwischen deren optimalen Zielfunktionswerten untersucht. Unter geeigneten Konvexitäts- und Monotonievoraussetzungen wird die Gleichheit dieser optimalen Zielfunktionswerte und zusätzlich die Existenz der starken Dualität zwischen der primalen und den entsprechenden dualen Aufgaben bewiesen. In Zusammenhang mit der starken Dualität werden Optimalitätsbedingungen hergeleitet. Die Ergebnisse werden abgerundet durch die Betrachtung zweier Spezialfälle, nämlich die klassische restringierte bzw. unrestringierte Optimierungsaufgabe, für welche sich die aus der Literatur bekannten Dualitätsergebnisse ergeben. Der zweite Teil der Arbeit ist der Dualität bei Standortproblemen gewidmet. Dazu wird ein sehr allgemeines Standortproblem mit konvexer zusammengesetzter Zielfunktion in Form eines Gauges formuliert, für das die entsprechenden Dualitätsaussagen abgeleitet werden. Als Spezialfälle werden Optimierungsaufgaben mit monotonen Normen betrachtet. Insbesondere lassen sich Dualitätsaussagen und Optimalitätsbedingungen für das klassische Weber und Minmax Standortproblem mit Gauges als Zielfunktion herleiten. Das letzte Kapitel verallgemeinert die Dualitätsaussagen, die im zweiten Kapitel erhalten wurden, auf multikriterielle Optimierungsprobleme. Mit Hilfe geeigneter Skalarisierungen betrachten wir zuerst ein zu der multikriteriellen Optimierungsaufgabe zugeordnetes skalares Problem. Anhand der in diesem Fall erhaltenen Optimalitätsbedingungen formulieren wir das multikriterielle Dualproblem. Weiterhin beweisen wir die schwache und, unter bestimmten Annahmen, die starke Dualität. Durch Spezialisierung der Zielfunktionen bzw. Nebenbedingungen resultieren die klassischen konvexen Mehrzielprobleme mit Ungleichungs- und Mengenrestriktionen. Als weitere Anwendungen werden vektorielle Standortprobleme betrachtet, zu denen wir entsprechende duale Aufgaben formulieren.
17

Advanced Integer Linear Programming Techniques for Large Scale Grid-Based Location Problems

Alam, Md. Noor-E- Unknown Date
No description available.
18

Lagrangian-informed mixed integer programming reformulations

Khuong, Paul Virak 12 1900 (has links)
La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques. / Integer linear programming is a robust and efficient approach to solve large-scale instances of combinatorial problems. However, problems constantly gain in complexity and sometimes impose strong constraints on computation times. We must then develop specialised methods to compute heuristic primal solutions to the problem and derive lower bounds on the optimal value, and thus prove the quality of our primal solutions. We propose to guide a reformulation approach for mixed integer programs with Lagrangian relaxations. After the identification of a strong relaxation, a mechanical process leads to a second integer formulation. This reformulation is equivalent to the initial one, but its linear relaxation is equivalent to the strong Lagrangian dual. We will show that the reformulation approach unifies and generalises prior formulations and lower bounding approaches, and that it exposes a simple mechanism to reduce the size of reformulations in return for weaker bounds. Nevertheless, our reformulations are large. We address this issue by solving their linear relaxations with specialised methods. Finally, we apply the reformulation approach to two location problems. This yields novel formulations for both problems; some are very large but, thanks to the aforementioned specialised methods, still practical.
19

Duality investigations for multi-composed optimization problems with applications in location theory

Wilfer, Oleg 30 March 2017 (has links) (PDF)
The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the conjugate duality by proposing a new duality concept, which can be understood as an umbrella for different meaningful perturbation methods. On the other hand, this thesis aims to investigate minimax location problems by means of the duality concept introduced in the first part of this work, followed by a numerical approach using epigraphical splitting methods. After summarizing some elements of the convex analysis as well as introducing important results needed later, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n+1 functions. For this problem we propose a conjugate dual problem, where the functions involved in the objective function of the primal problem are decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong duality and give necessary and sufficient optimality conditions. As applications of this approach we determine the formulae of the conjugate as well as the biconjugate of the objective function of the primal problem and analyze an optimization problem having as objective function the sum of reciprocals of concave functions. In the second part of this thesis we discuss in the sense of the introduced duality concept three classes of minimax location problems. The first one consists of nonlinear and linear single minimax location problems with geometric constraints, where the maximum of nonlinear or linear functions composed with gauges between pairs of a new and existing points will be minimized. The version of the nonlinear location problem is additionally considered with set-up costs. The second class of minimax location problems deals with multifacility location problems as suggested by Drezner (1991), where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. As the last and third class the classical multifacility location problem with geometrical constraints is considered in a generalized form where the maximum of gauges between pairs of new facilities and the maximum of gauges between pairs of new and existing facilities will be minimized. To each of these location problems associated dual problems will be formulated as well as corresponding duality statements and necessary and sufficient optimality conditions. To illustrate the results of the duality approach and to give a more detailed characterization of the relations between the location problems and their corresponding duals, we consider examples in the Euclidean space. This thesis ends with a numerical approach for solving minimax location problems by epigraphical splitting methods. In this framework, we give formulae for the projections onto the epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the discussed location problems.
20

Duality investigations for multi-composed optimization problems with applications in location theory

Wilfer, Oleg 29 March 2017 (has links)
The goal of this thesis is two-fold. On the one hand, it pursues to provide a contribution to the conjugate duality by proposing a new duality concept, which can be understood as an umbrella for different meaningful perturbation methods. On the other hand, this thesis aims to investigate minimax location problems by means of the duality concept introduced in the first part of this work, followed by a numerical approach using epigraphical splitting methods. After summarizing some elements of the convex analysis as well as introducing important results needed later, we consider an optimization problem with geometric and cone constraints, whose objective function is a composition of n+1 functions. For this problem we propose a conjugate dual problem, where the functions involved in the objective function of the primal problem are decomposed. Furthermore, we formulate generalized interior point regularity conditions for strong duality and give necessary and sufficient optimality conditions. As applications of this approach we determine the formulae of the conjugate as well as the biconjugate of the objective function of the primal problem and analyze an optimization problem having as objective function the sum of reciprocals of concave functions. In the second part of this thesis we discuss in the sense of the introduced duality concept three classes of minimax location problems. The first one consists of nonlinear and linear single minimax location problems with geometric constraints, where the maximum of nonlinear or linear functions composed with gauges between pairs of a new and existing points will be minimized. The version of the nonlinear location problem is additionally considered with set-up costs. The second class of minimax location problems deals with multifacility location problems as suggested by Drezner (1991), where for each given point the sum of weighted distances to all facilities plus set-up costs is determined and the maximal value of these sums is to be minimized. As the last and third class the classical multifacility location problem with geometrical constraints is considered in a generalized form where the maximum of gauges between pairs of new facilities and the maximum of gauges between pairs of new and existing facilities will be minimized. To each of these location problems associated dual problems will be formulated as well as corresponding duality statements and necessary and sufficient optimality conditions. To illustrate the results of the duality approach and to give a more detailed characterization of the relations between the location problems and their corresponding duals, we consider examples in the Euclidean space. This thesis ends with a numerical approach for solving minimax location problems by epigraphical splitting methods. In this framework, we give formulae for the projections onto the epigraphs of several sums of powers of weighted norms as well as formulae for the projection onto the epigraphs of gauges. Numerical experiments document the usefulness of our approach for the discussed location problems.

Page generated in 0.0545 seconds