Spelling suggestions: "subject:"[een] LOCATION PROBLEMS"" "subject:"[enn] LOCATION PROBLEMS""
21 |
Duality and optimality in multiobjective optimizationBot, Radu Ioan 04 July 2003 (has links) (PDF)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three
different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify,
under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals.
By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional
programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown.
We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some
inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical.
A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her.
Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen.
Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch.
Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
|
22 |
[en] APPLICATION OF MULTIPERIOD UNCAPACITATED HUB LOCATION MODEL FOR EQUIPMENT PHYSICAL DISTRIBUTION OF A SATELLITE TELECOMMUNICATIONS COMPANY: A CASE STUDY / [pt] APLICAÇÃO MULTIPERÍODO DO MODELO DE LOCALIZAÇÃO DE HUBS NÃO-CAPACITADOS NA DISTRIBUIÇÃO FÍSICA DE EQUIPAMENTOS DE UMA EMPRESA DE TELECOMUNICAÇÕES VIA SATÉLITE: UM ESTUDO DE CASOMARCOS LOPES BRITTO 18 April 2018 (has links)
[pt] A relação entre as atividades logísticas desempenhadas nas empresas de telecomunicações e sua prestação de serviço parece, para o público em geral, estarem desassociadas. Entretanto, a necessidade de atendimento de áreas extensas associadas a redução custos, coloca essas atividades, ditas não-essenciais, no grupo de atividades estratégicas. Através da introdução do ambiente de telecomunicações brasileiro, da importância da logística para este serviço e do estudo de problemas de localização, a presente dissertação de mestrado desenvolve um modelo MIP - Mix Integer Programming – dinâmico para o problema de localização de hubs conhecido como: ULP - Uncapacitated Hub Location Problem, sendo este modelo utilizado na análise de um estudo de caso real de uma operadora de serviços de telecomunicações via satélite, onde foram obtidos insights quanto o nível de redução de custo através do redesenho da rede de distribuição e da escolha de novos pontos de armazenagem, sendo comprovados através um estudo estocástico com 500 cenários aleatórios. / [en] The relationship between logistics activities performed on telecommunications companies and their service delivery seems, to the public, is disassociated. However, the need to service large areas associated with reducing costs, puts these activities nonessential into to the group of strategic activities. Through the introduction of the Brazilian telecommunications environment, the importance of logistics for this service and the study location problems, this master thesis develops a dynamic MIP model - Mix Integer Programming - for the hub location problem known as ULP - Uncapacitated Hub Location Problem, and this model is used in the analysis of a real case study of an satellite telecommunications operator. which were obtained insights into the level of reducing cost by redesigning of distribution network and the choice of new warehouse points, being demonstrated by a stochastic study of 500 random scenarios.
|
23 |
Duality and optimality in multiobjective optimizationBot, Radu Ioan 25 June 2003 (has links)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three
different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify,
under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals.
By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional
programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown.
We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some
inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical.
A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her.
Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen.
Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch.
Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
|
24 |
Duality for convex composed programming problemsVargyas, Emese Tünde 25 November 2004 (has links)
The goal of this work is to present a conjugate duality treatment of composed programming as well as to give an overview of some recent developments in both scalar and multiobjective optimization.
In order to do this, first we study a single-objective optimization problem, in which the objective function as well as the constraints are given by composed functions. By means of the conjugacy approach based on the perturbation theory, we provide different kinds of dual problems to it and examine the relations between the optimal objective values of the duals. Given some additional assumptions, we verify the equality between the optimal objective values of the duals and strong duality between the primal and the dual problems, respectively. Having proved the strong duality, we derive the optimality conditions for each of these duals. As special cases of the original problem, we study the duality for the classical optimization problem with inequality constraints and the optimization problem without constraints.
The second part of this work is devoted to location analysis. Considering first the location model with monotonic gauges, it turns out that the same conjugate duality principle can be used also for solving this kind of problems. Taking in the objective function instead of the monotonic gauges several norms, investigations concerning duality for different location problems are made.
We finish our investigations with the study of composed multiobjective optimization problems. In doing like this, first we scalarize this problem and study the scalarized one by using the conjugacy approach developed before. The optimality conditions which we obtain in this case allow us to construct a multiobjective dual problem to the primal one. Additionally the weak and strong duality are proved. In conclusion, some special cases of the composed multiobjective optimization problem are considered. Once the general problem has been treated, particularizing the results, we construct a multiobjective dual for each of them and verify the weak and strong dualities. / In dieser Arbeit wird, anhand der sogenannten konjugierten Dualitätstheorie, ein allgemeines Dualitätsverfahren für die Untersuchung verschiedener Optimierungsaufgaben dargestellt. Um dieses Ziel zu erreichen wird zuerst eine allgemeine Optimierungsaufgabe betrachtet, wobei sowohl die Zielfunktion als auch die Nebenbedingungen zusammengesetzte Funktionen sind. Mit Hilfe der konjugierten Dualitätstheorie, die auf der sogenannten Störungstheorie basiert, werden für die primale Aufgabe drei verschiedene duale Aufgaben konstruiert und weiterhin die Beziehungen zwischen deren optimalen Zielfunktionswerten untersucht. Unter geeigneten Konvexitäts- und Monotonievoraussetzungen wird die Gleichheit dieser optimalen Zielfunktionswerte und zusätzlich die Existenz der starken Dualität zwischen der primalen und den entsprechenden dualen Aufgaben bewiesen. In Zusammenhang mit der starken Dualität werden Optimalitätsbedingungen hergeleitet. Die Ergebnisse werden abgerundet durch die Betrachtung zweier Spezialfälle, nämlich die klassische restringierte bzw. unrestringierte Optimierungsaufgabe, für welche sich die aus der Literatur bekannten Dualitätsergebnisse ergeben.
Der zweite Teil der Arbeit ist der Dualität bei Standortproblemen gewidmet. Dazu wird ein sehr allgemeines Standortproblem mit konvexer zusammengesetzter Zielfunktion in Form eines Gauges formuliert, für das die entsprechenden Dualitätsaussagen abgeleitet werden. Als Spezialfälle werden Optimierungsaufgaben mit monotonen Normen betrachtet. Insbesondere lassen sich Dualitätsaussagen und Optimalitätsbedingungen für das klassische Weber und Minmax Standortproblem mit Gauges als Zielfunktion herleiten.
Das letzte Kapitel verallgemeinert die Dualitätsaussagen, die im zweiten Kapitel erhalten wurden, auf multikriterielle Optimierungsprobleme. Mit Hilfe geeigneter Skalarisierungen betrachten wir zuerst ein zu der multikriteriellen Optimierungsaufgabe zugeordnetes skalares Problem. Anhand der in diesem Fall erhaltenen Optimalitätsbedingungen formulieren wir das multikriterielle Dualproblem. Weiterhin beweisen wir die schwache und, unter bestimmten Annahmen, die starke Dualität. Durch Spezialisierung der Zielfunktionen bzw. Nebenbedingungen resultieren die klassischen konvexen Mehrzielprobleme mit Ungleichungs- und Mengenrestriktionen. Als weitere Anwendungen werden vektorielle Standortprobleme betrachtet, zu denen wir entsprechende duale Aufgaben formulieren.
|
25 |
Proximal Splitting Methods in Nonsmooth Convex OptimizationHendrich, Christopher 25 July 2014 (has links) (PDF)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems.
After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators.
The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
|
26 |
Proximal Splitting Methods in Nonsmooth Convex OptimizationHendrich, Christopher 17 July 2014 (has links)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems.
After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators.
The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
|
Page generated in 0.0524 seconds