• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic induction heating of superparamagnetic nanoparticles for applications in the energy industry

Davidson, Andrew Marshall 23 April 2013 (has links)
A novel method of delivering thermal energy efficiently for flow assurance and for improved heavy oil production/transport is described. The method, an improved form of magnetic induction heating, uses superparamagnetic nanoparticles that generate heat locally when exposed to a high frequency magnetic field oscillation, via a process known as Neel relaxation. This concept is currently used in biomedicine to locally heat and ablate cancerous tissues. Dependence of the rate of heat generation by commercially available, single-domain Fe3O4 nanoparticles of ~10 nm size, on the magnetic field strength and frequency was quantified. Experiments were conducted for nanoparticles dispersed in water, in hydrocarbon liquid, and embedded in a thin, solid film dubbed “nanopaint”. For a stationary fluid heat generation increases linearly with loading of nanoparticles. The rate of heat transfer from the nanopaint to a flowing fluid was up to three times greater than the heat transfer rate to a static fluid. Dispersion models indicated that the thermal conductivity of the dispersing fluid did not greatly influence the heat transfer results, whereas differences in size between hydrophilic and hydrophobic nanoparticles did. The model of static fluid in a nanopainted tube verified that the nanoparticle loading in the paint was ~30wt% and the nanopaint thickness was 600 µm. The model of flowing fluid in a nanopainted tube showed that internal mixing in the system, even at laminar flow rates, improved heat transfer to the center of the flowing fluid. A waveguide model verified the feasibility of using steel hydrocarbon transport pipelines as a means to guide electromagnetic energy to target heating locations along the pipeline if the energy is transmitted at frequencies above the cutoff frequency. Heating of nanopaint with external magnetic field application has immediate potential impact on oil and gas sector, because such coating could be applied to inner surfaces of pipelines and production facilities. A nanoparticle dispersion could also be injected into the reservoir zone or gravel pack near the production well, so that a thin, adsorbed layer of nanoparticles is created on pore walls. With localized inductive heating of those surfaces, hydrate formation or wax deposition could be prevented; and heavy oil production/transport could be improved by creating a ‘slippage layer’ on rock pore walls and inner surfaces of transport pipes. / text
2

Cellulose network materials - compression molding and magnetic functionalization

Galland, Sylvain January 2012 (has links)
QC 20120315
3

Fast Protein Digestion with the Assistance of Magnetic Nanoparticle Coated with Trypsin and Detection of Trace Protein with Assistance of Liposome encapsulated signal material and MALDI-TOF

Lin, Meng-Fang 26 June 2006 (has links)
no
4

Biomolecular Recognition Based on Field Induced Magnetic Bead Dynamics

Stjernberg Bejhed, Rebecca January 2014 (has links)
In this thesis, three different read-out techniques for biomolecular recognition have been studied. All three techniques rely on the change in dynamic behaviour of probe functionalised magnetic beads after binding to a biomolecular target complementary to the probe. In the first technique presented, the sample is exposed to an AC magnetic field while the response to this field is probed using a laser source and a photodetector positioned at opposite sides of the sample. Beads bound to the target entity will experience an increase in their hydrodynamic volume, and will not be able to respond as rapidly to an alternating field as free beads. Here, the target entity is either DNA coils formed by rolling circle amplification or biotinylated bovine serum albumin (bBSA). The change in dynamic behaviour is measured as a frequency dependent modulation of transmitted light. Limit of detections (LODs) of 5 pM DNA coils originating from a V. cholerae target and 100 pM of bBSA have been achieved. In the second technique presented, the beads are magnetically transported across a probe functionalised detection area on a microchip. Beads bound to a target will be blocked from interaction with the detection area probes, whereas in the absence of a target, beads will be immobilised on the detection area. The LOD of biotin for this system proved to be in the range of 20 to 50 ng/ml. In the third technique presented, the sample is microfluidically transported to a detection area on a microchip. The read-out is performed using a planar Hall effect bridge sensor. A sinusoidal current is applied to the bridge in one direction and the sensor output voltage is measured across the sensor in the perpendicular direction. The AC current induced bead magnetisation contributing to the sensor output will appear different for free beads compared to beads bound to a target. LODs of 500 B. globigii spores and 2 pM of V. cholerae DNA coils were achieved. From a lab-on-a-chip point of view, all three techniques considered in this thesis show promising results with regards to sensitivity and integrability.
5

Novel methods for the separation and intervention of Salmonella typhimurium for food safety applications

Pizzo, Amber 20 September 2013 (has links)
This work begins with chemotaxis studies involving Salmonella typhimurium. Known chemical attractants (ribose, aspartic acid, etc.) and repellents (nickel chloride, sodium acetate, etc.) were tested to direct bacteria swimming patterns. It was found that high concentrations of both attractant and repellent, approximately 10% chemical in deionized (DI) water, yielded better separation results than lower concentrations, such as 1% and .1% chemical in DI water. Utilizing these attractants or repellents appropriately can allow live bacteria to be directed in a desired manner in a microfluidic device, while dead bacteria, which yield no response, can be separated into a waste reservoir. Another important aspect of bacteria separation is preconcentration, or the process of concentrating bacteria in a usable amount of liquid for further analysis in a microfluidic device. This study introduces a method of capturing Salmonella typhimurium through the use of magnetic nanoparticles (MNPs) without functionalizing them with antibody or amine coatings. Based on the work by Deng et al., MNPs were prepared in various ways to alter their diameter and surface characteristics to achieve optimal bacteria capture efficiency. A capture efficiency of approximately 94% has been achieved by altering chemical quantities in the MNP fabrication process. A macro-scale flow cell prototype was designed and characterized in order to ‘clean’ large volumes of buffer and separate the bacteria-MNP aggregates through the use of a magnetic field. Finally, intervention of bacteria is a significant topic in food safety applications. This study utilizes Fe (III) to inhibit bacteria growth. This chemical was used in the presence of Salmonella, E. coli, Staphylococcus, and Pseudomonas. Further experiments were conducted with raw chicken and lettuce contaminated with Salmonella typhimurium. Using as little as .005M Fe III in DI water, up to 5 orders of magnitude reduction in bacteria growth was seen on test plates as compared to control plates.
6

Magnetic Nanoparticle Field Directed Self-Assembly: Magnetic Flux Line Mapping and Block Copolymer Driven Assembly

Schmidt, Ryan Michael 17 August 2011 (has links)
No description available.
7

Magnetic Field Effects Induced by Incorporation of Magnetic Nanoparticles on Bulk Heterojunction Polymer Solar Cells

WU, DEZHEN 05 June 2018 (has links)
No description available.
8

Nanopartículas magnéticas de ferritas recobertas com sílica e funcionalizadas com vinil silano / Magnetic nanoparticles of ferrites coated with silica and functionalized with vinyl silane

Queiroz, Daniely Ferreira de 31 March 2017 (has links)
Com o desenvolvimento da nanociência e da nanotecnologia, as nanopartículas magnéticas vêm sendo cada vez mais gerado interesse devido as inúmeras possíveis aplicações na área de catálise, diagnóstico, pigmentos, sensores, etc. Atualmente, as nanopartículas com potencialidade de aplicação em biomedicina que pode se destacar os as ferritas magnéticas os quais apresentam comportamento superparamagnético a temperatura ambiente. Além dos ligantes funcionais, as nanopartículas magnéticas são geralmente recobertas com polímeros orgânicos ou inorgânicos, destacando-se a sílica, nessa última classe. O sistemas as nanopartículas magnéticas recobertas com sílica formando um sistema casca-caroço, possibilita que o núcleo magnético se mantenha protegido por uma camada polimérica que pode conter grupos funcionais ativos, formando hidridos orgânicos-inorgânicos que devido a sua propriedade hidrofóbica ou hidrofílica dependendo da natureza do ligante de modificação de superfície. Este trabalho foi desenvolvido com intuito de obter nanopartículas magnéticas de ferrita MFe2O4, com (M= Fe, Co, Ni e Cu) com controle de tamanho, forma, composição química e estrutural, dos quais foram sintetizados pelo método de decomposição térmica utilizando diferente precursores metálicos para adequação das melhores condições de síntese. As ferritas magnéticas foram recobrimento com sílica, modificando da superfície da partícula e possibilitando caráter hidrofílico ao sistema casca-caroço, apresentando uma melhor estabilidade coloidal em dispersão aquosa devido a presença de grupos silanois na superfície, bem como uma recobrimento uniforma com apenas um núcleo magnético sem formação de aglomerados. A funcionalização com o grupo o trietoxivinilsilano, através de reações de condensação via catálise básica ou ácida, formou uma rede polimérica Si-O-Si, sendo que a presença do grupo vinil (-CH=CH2) livre na a superfície do sistema casca-caroço foi evidenciado através da técnica de FTIR. Portanto foi possível a obtenção de um sistema hibrido orgânico-inorgânico com a superfície contendo grupo que podem ser reativos, abrindo a possibilidade da utilização deste material para futuros testes de aplicações como sensor multifuncional. / In recent decades the development of nanoscience and nanotechnology, magnetic nanoparticles have been increasingly generated interest due to the numerous possible applications in the field of catalysis, diagnosis, pigments, sensors, etc. Currently, the nanoparticles with potential of application in biomedicine that can stand out the magnetic ferrites which have superparamagnetic behavior at room temperature. In addition to the functional binders, magnetic nanoparticles are generally coated with organic or inorganic polymers, especially silica in the latter class. The magnetic nanoparticle systems covered with silica forming a shell-core system allow the magnetic core to remain protected by a polymeric layer that may contain active functional groups, forming organic-inorganic hydrides that due to its hydrophobic or hydrophilic property depending on the nature of the surface modifying binder. This work was developed to obtain magnetic nanoparticles of MFe2O4 ferrite, with (M = Fe, Co, Ni and Cu) control of size, shape, chemical and structural composition, of which were synthesized by the thermal decomposition method using different precursors to suit the best conditions of synthesis. The magnetic ferrites were coated with silica, modifying the surface of the particle and allowing a hydrophilic character to the shell-core system, presenting a better colloidal stability in aqueous dispersion due to the presence of silane groups on the surface, as well as a uniform coating with only one magnetic core without formation of agglomerates. The functionalization with the triethoxyvinylsilane group, through condensation reactions via basic or acid catalysis, formed a Si-O-Si polymer network, and the presence of the free vinyl group (-CH=CH2) on the shell surface was observed by FTIR technique. Therefore, it was possible to obtain an organic-inorganic hybrid system with the surface containing the reactive group, opening the possibility of using this material for tests of future applications as multifunctional sensor.
9

Preparation Of Polyethylene Glycol Coated Magnetic Nanoparticles For Targeting Of Cancer Cells

Keskin, Tugba 01 February 2012 (has links) (PDF)
Conventional cancer chemotherapies cannot differentiate between healthy and cancer cells, and lead to severe side effects and systemic toxicity. In the last decades, different kinds of controlled drug delivery systems have been developed to overcome these shortcomings of chemotherapeutics. Magnetic nanoparticles (MNP) are potentially important in cancer treatment since they can be targeted to tumor site by an externally applied magnetic field. In this study, it is aimed to synthesize folic acid conjugated / polyethylene glycol (PEG) coated magnetic nanoparticles with appropriate size, surface chemistry, magnetization and biocompatibility to be used in biomedical applications. First MNP were synthesized, then covered with oleic and PEG / and finally conjugated with folic acid. A detailed characterization of synthesized nanoparticles was done by TEM, XRD, FTIR, VSM and XTT analyses. MNP synthesized by the rapid addition of ammonium hydroxide exhibited more spherical nanoparticles with a narrower size distribution. Agglomeration tendency of naked nanoparticles was prevented by oleic acid addition during the synthesis. Both naked and surface treated MNP have been found to exhibit superparamagnetic behavior both at room temperature (23
10

Compression-moulded and multifunctional cellulose network materials

Galland, Sylvain January 2013 (has links)
Cellulose-based materials are widely used in a number of important applications (e.g. paper, wood, textiles). Additional developments are suggested by the growing interest for natural fibre-based composite and nanocomposite materials. The motivation is not only in the economic and ecological benefits, but is also related to advantageous properties and characteristics. The objective of this thesis is to provide a better understanding of process-structure-property relationships in some novel cellulose network materials with advanced functionalities, and showing potential large-scale processability. An important result is the favourable combination of mechanical properties observed for network-based cellulose materials. Compression-moulding of cellulose pulp fibres under high pressure (45 MPa) and elevated temperature (120 – 180 oC) provides an environmentally friendly process for preparation of stiff and strong cellulose composite plates. The structure of these materials is characterized at multiple scales (molecular, supra-molecular and microscale). These observations are related to measured reduction in water retention ability and improvement in mechanical properties. In a second part, cellulose nanofibrils (NFC) are functionalized with in-situ precipitated magnetic nanoparticles and formed into dense nanocomposite materials with high inorganic content. The precipitation conditions influence particle size distributions, which in turn affect the magnetic properties of the material. Besides, the decorated NFC network provides high stiffness, strength and toughness to materials with very high nanoparticle loading (up to 50 vol.%). Subsequently, a method for impregnation of wet NFC network templates with a thermosetting epoxy resin is developed, enabling the preparation of well-dispersed epoxy-NFC nanocomposites with high ductility and moisture durable mechanical properties. Furthermore, cellulose fibrils interact positively with the epoxy during curing (covalent bond formation and accelerated curing). Potential large scale development of epoxy-NFC and magnetic nanocomposites is further demonstrated with the manufacturing of 3D shaped compression-moulded objects. Finally, the wet impregnation route developed for epoxy is adapted to prepare UV-curable NFC nanocomposite films with a hyperbranched polymer matrix. Different chemical modifications are applied to the NFC in order to obtain moisture durable oxygen barrier properties. / <p>QC 20131111</p>

Page generated in 0.0521 seconds