• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

[en] AN ANNOTATED TRANSLATION: COLLISIONS AND COLAPSES IN BEN LERNER S MEAN FREE PATH POETIC LANGUAGE / [pt] TRADUÇÃO COMENTADA: COLISÕES E QUEBRAS NA LINGUAGEM POÉTICA DE BEN LERNER EM MEAN FREE PATH

MARIA CECILIA TOURINO BRANDI 31 January 2020 (has links)
[pt] A dissertação consiste em uma tradução comentada de Mean Free Path (2010), último livro de poesia de Ben Lerner, poeta e romancista estadunidense contemporâneo. Lerner desenvolve uma poética marcada por colisões e fragmentações, com choques de sentido de um verso para outro, versos fora de ordem, recombinados etc. Tais características dispararam reflexões sobre as escolhas tradutórias, comentadas em notas (relativas aos versos), às quais são entrelaçados conceitos teóricos caros aos estudos de tradução poética, que atribuem ao tradutor um papel ativo. A linguagem do autor se articula com a forma como se dá a comunicação nos dias de hoje. / [en] The thesis consists of an annotated translation of Mean Free Path (2010), the latest poetry book written by the contemporary American poet and novelist Ben Lerner. He creates a poetic language marked by collisions and fragmentations, with disruptions to the meanings from one line to another, lines out of order or recombined etc. These features triggered reflections on the translation choices, which are discussed in notes on specific lines. Theoretical concepts relevant to the study of poetry translation, which give translators an active role, are intertwined with the notes. The author s poetic language is attuned to the way people communicate nowadays.
12

Simulation du parcours des électrons élastiques dans les matériaux et structures. Application à la spectroscopie du pic élastique multi-modes MM-EPES / Simulation of the path of elastic electrons in materials and structures. Application to spectroscopy of the MM-EPES multi-mode elastic peak

Chelda, Samir 25 November 2010 (has links)
La spectroscopie EPES (Elastic Peak Electron Spectroscopy) permet de mesurer le pourcentage he d’électrons rétrodiffusés élastiquement par la surface d’un échantillon soumis à un bombardement électronique. C’est une méthode non destructive et extrêmement sensible à la surface. L'objectif de ce travail est de modéliser le cheminement des électrons élastiques dans la matière grâce à une simulation informatique basée sur la méthode Monte Carlo. Cette simulation contribue de manière essentielle à la connaissance et à l'interprétation des résultats expérimentaux obtenus par spectroscopie EPES. Nous avons, de plus, adapté cette simulation à différentes surfaces transformées à l’échelle micrométrique et nanométrique. A l’aide d’une méthode originale, basée sur une description couche par couche du matériau, j’ai réalisé un programme informatique (MC1) rendant compte du cheminement des électrons élastiques dans les différentes couches du matériau. Le nombre d’électrons ressortant de la surface dépend de nombreux paramètres comme : la nature du matériau à étudier, l’énergie des électrons incidents, l’angle d’incidence, les angles de collection des analyseurs. De plus, je me suis intéressé à l’effet de la rugosité de la surface et j’ai démontré qu’elle joue un rôle déterminant sur l’intensité du pic élastique. Ensuite, grâce à l’association de la spectroscopie EPES et de la simulation Monte Carlo, j’ai déduit les modes de croissance de l’or sur substrat d’argent et de cuivre. Les effets de l’arrangement atomique et des pertes énergétiques de surfaces ont ensuite été étudiés. Pour cela, une deuxième simulation MC2 tenant compte de ces deux paramètres a été réalisée permettant d’étudier les surfaces à l’échelle nanométriques. Ces paramètres jusqu’alors non pris en compte dans notre simulation MC1, joue un rôle essentiel sur l’intensité élastique. Ensuite, j’ai obtenu une formulation simple et exploitable pour l’interprétation des résultats obtenus par la simulation MC2 pour un analyseur RFA. Afin de valider, les différents résultats de la simulationMC2, j’ai réalisé des surfaces de silicium nanostructurées, à l’aide de masques d’oxyde d’alumine réalisés par voie électrochimique. J’ai pu créer des nano-pores par bombardement ionique sous ultravide sur des surfaces de silicium. Afin de contrôler la morphologie de la surface, j’ai effectué de l’imagerie MEB ex-situ. La simulation Monte Carlo développée associée aux résultats EPES expérimentaux permet d’estimer la profondeur, le diamètre et la morphologie des pores sans avoir recours à d’autres techniques ex-situ.Cette simulation MC2 permet de connaître la surface étudiée à l’échelle nanométrique. / EPES (Elastic Peak Electron Spectroscopy) allows measuring the percentage he of elastically backscattered electrons from the surface excited by an electron beam. This is a non destructive method which is very sensitive to the surface region. The aim of this work is to model the trajectory of elastic electrons in the matter with a computer simulation based on Monte Carlo method. This simulation allows interpreting experimental results of the EPES spectroscopy. We have moreover adapted this simulation for different surfaces transformed to micrometer and nanometer scales. Using an original method, based on a description of material layer by layer, I realized a computer program (MC1) that takes into account the path of elastic electrons in different layers of material. The number of electrons emerging from the surface depends on many parameters such as: the electron primary energy, the nature of the material, the incidence angle and the collection angles of the analyzer. In addition, I was interested in the effect of surface roughness and I showed that it plays an important role in the intensity of the elastic peak. Then, through an association of the EPES and the Monte Carlo simulation results, I deduced the growth patterns of gold on silver and copper substrates. The effects of the atomic arrangement and the surface excitations were then studied. For this, a new simulation MC2 that takes into account these two parameters has been developed to study nanoscale surfaces. These parameters not previously included in our MC1simulation play a important role in the elastic intensity. Then I have got a simple formula for interpreting the results obtained by the simulation for a RFA analyzer. To validate the different results of the simulation MC2, I realized nano-structured silicon surfaces, using aluminium oxide masks. Nano-pores have been created by Ar+ ions bombardment in UHV chamber on silicon surfaces.To control the morphology of the surfaces, I realized SEM images (Techinauv Casimir) ex-situ. The Monte Carlo simulations, developed here, associated with the EPES experimental results can estimate the depth, the diameter, the morphology of pores without the help of other ex-situ techniques.
13

The Development of Image Processing Algorithms in Cryo-EM

Rui Yan (6591728) 15 May 2019 (has links)
Cryo-electron microscopy (cryo-EM) has been established as the leading imaging technique for structural studies from small proteins to whole cells at a molecular level. The great advances in cryo-EM have led to the ability to provide unique insights into a wide variety of biological processes in a close to native, hydrated state at near-atomic resolutions. The developments of computational approaches have significantly contributed to the exciting achievements of cryo-EM. This dissertation emphasizes new approaches to address image processing problems in cryo-EM, including tilt series alignment evaluation, simultaneous determination of sample thickness, tilt, and electron mean free path based on Beer-Lambert law, Model-Based Iterative Reconstruction (MBIR) on tomographic data, minimization of objective lens astigmatism in instrument alignment and defocus and magnification dependent astigmatism of TEM images. The final goal of these methodological developments is to improve the 3D reconstruction of cryo-EM and visualize more detailed characterization.
14

Electronic transport through defective semiconducting carbon nanotubes

Teichert, Fabian, Zienert, Andreas, Schuster, Jörg, Schreiber, Michael 12 December 2018 (has links)
We investigate the electronic transport properties of semiconducting (m, n) carbon nanotubes (CNTs) on the mesoscopic length scale with arbitrarily distributed realistic defects. The study is done by performing quantum transport calculations based on recursive Green's function techniques and an underlying density-functional-based tight-binding model for the description of the electronic structure. Zigzag CNTs as well as chiral CNTs of different diameter are considered. Different defects are exemplarily represented by monovacancies and divacancies. We show the energy-dependent transmission and the temperature-dependent conductance as a function of the number of defects. In the limit of many defetcs, the transport is described by strong localization. Corresponding localization lengths are calculated (energy dependent and temperature dependent) and systematically compared for a large number of CNTs. It is shown, that a distinction by (m − n)mod 3 has to be drawn in order to classify CNTs with different bandgaps. Besides this, the localization length for a given defect probability per unit cell depends linearly on the CNT diameter, but not on the CNT chirality. Finally, elastic mean free paths in the diffusive regime are computed for the limit of few defects, yielding qualitatively same statements.
15

Quantum transport in defective carbon nanotubes at mesoscopic length scales

Teichert, Fabian 17 July 2019 (has links)
This thesis theoretically investigates the electronic transport properties of defective carbon nanotubes (CNTs). For the defects the focus is set to vacancy types. The calculations are performed using quantum transport theory and an underlying density-functional-based tight-binding method. Two algorithmic improvements are derived, which accelerate the common methods for quasi one-dimensional systems for the specific case of (i) randomly distributed defects and (ii) long unit cells. With this, the transmission spectrum and the conductance is calculated as a function of the CNT length, diameter, chiral angle, defect type, defect density, defect fraction, and temperature. The diffusive and the localized transport regime are described by extracting elastic mean free paths and localization lengths for metallic and semiconducting CNTs. Simple analytic models for estimating or even predicting the conductance dependence on the mentioned parameters are derived. Finally, the formation of defect-induced long-range deformations and its influence on the conductance are studied.:1 Introduction 2 Fundamentals 2.1 Carbon nanotubes 2.1.1 Structure 2.1.2 Properties 2.1.3 Defects 2.1.4 Synthesis 2.1.5 Characterization 2.1.6 Applications 2.2 Electron structure theory 2.2.1 Introduction 2.2.2 Density functional theory 2.2.3 Density-functional-based tight binding 2.2.3.1 First-order expansion 2.2.3.2 Creation of the parameter set 2.2.3.3 Second-order expansion 2.2.3.4 Usage 2.3 Electron transport 2.3.1 Equilibrium Green’s-function-based quantum transport theory 2.3.2 Transport regimes 2.3.3 Classical derivation: drift-diffusion equation with a sink 2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619) A.1 Introduction A.2 Quantum transport theory A.3 Recursive Green’s function formalisms A.3.1 Forward iteration scheme A.3.2 Recursive decimation scheme A.3.3 Renormalization decimation algorithm A.4 Improved RGF+RDA A.5 Performance test A.5.1 Random test matrix A.5.2 Transport through carbon nanotubes A.6 Summary and conclusions B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026) B.1 Introduction B.2 Theoretical framework B.2.1 Transport formalism B.2.2 Recursive Green’s function formalism B.2.3 Electronic structure B.2.4 Strong localization B.3 Modeling details of the defective system B.4 Results and discussion B.4.1 Single defects B.4.2 Randomly distributed defects B.4.3 Localization exponent B.4.4 Diameter dependence and temperature dependence of the localization exponent B.5 Summary and conclusions Supplementary material C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57) C.1 Introduction C.2 Theoretical framework C.3 Modeling details C.4 Results and discussion C.4.1 Conductance C.4.2 Localization exponent C.4.3 Influence of temperature C.4.4 Conductance estimation C.5 Summary and conclusions D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039) D.1 Introduction D.2 Electronic transport D.3 Decimation technique and renormalization-decimation algorithm D.4 Renormalization-decimation algorithm for electrodes with long unit cells D.4.1 Surface Green’s functions D.4.2 Bulk Green’s functions and electrode density of states D.5 Complexity measure and performance test D.6 Exemplary results D.7 Summary and conclusions E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012) E.1 Introduction E.2 Theoretical framework E.3 Modeling details E.4 Results and discussion E.4.1 Transmission and transport regimes E.4.2 Energy dependent localization exponent and elastic mean free path E.4.3 Conductance, effective localization exponent and effective elastic mean free path E.5 Summary and conclusions Supplementary material F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023) F.1 Introduction F.2 Theory F.3 Results F.4 Summary and conclusions 3 Ongoing work 4 Summary and outlook 4.1 Summary 4.2 Outlook 5 Appendix 5.1 Bandstructure of graphene 5.2 Quantum transport theory and Landauer-Büttiker formula References List of figures List of tables Acknowledgement Selbstständigkeitserklärung Curriculum vitae List of publications / Diese Dissertation untersucht mittels theoretischer Methoden die elektronischen Transporteigenschaften von defektbehafteten Kohlenstoffnanoröhren (englisch: carbon nanotubes, CNTs). Dabei werden Vakanzen als Defekte fokussiert behandelt. Die Berechnungen werden mittels Quantentransporttheorie und einer zugrunde liegenden dichtefunktionalbasierten Tight-Binding-Methode durchgeführt. Zwei algorithmische Verbesserungen werden hergeleitet, welche die üblichen Methoden für quasi-eindimensionale Systeme für zwei spezifische Fälle beschleunigen: (i) zufällig verteilte Defekte und (ii) lange Einheitszellen. Damit werden das Transmissionsspektrum und der Leitwert als Funktion von CNT-Länge, Durchmesser, chiralem Winkel, Defekttyp, Defektdichte, Defektanteil und Temperatur berechnet. Das Diffusions- und das Lokalisierungstransportregime werden beschrieben, indem die elastische freie Weglänge und die Lokalisierungslänge für metallische und halbleitende CNTs extrahiert werden. Einfache analytische Modelle zur Abschätzung bis hin zur Vorhersage des Leitwertes in Abhängigkeit besagter Parameter werden abgeleitet. Schlussendlich werden die Bildung einer defektinduzierten, langreichweitigen Deformation und deren Einfluss auf den Leitwert studiert.:1 Introduction 2 Fundamentals 2.1 Carbon nanotubes 2.1.1 Structure 2.1.2 Properties 2.1.3 Defects 2.1.4 Synthesis 2.1.5 Characterization 2.1.6 Applications 2.2 Electron structure theory 2.2.1 Introduction 2.2.2 Density functional theory 2.2.3 Density-functional-based tight binding 2.2.3.1 First-order expansion 2.2.3.2 Creation of the parameter set 2.2.3.3 Second-order expansion 2.2.3.4 Usage 2.3 Electron transport 2.3.1 Equilibrium Green’s-function-based quantum transport theory 2.3.2 Transport regimes 2.3.3 Classical derivation: drift-diffusion equation with a sink 2.3.4 Quantum derivation: Dorokhov-Mello-Pereyra-Kumar theory A Improved recursive Green’s function formalism for quasi one-dimensional systems with realistic defects (J. Comput. Phys. 334 (2017), 607–619) A.1 Introduction A.2 Quantum transport theory A.3 Recursive Green’s function formalisms A.3.1 Forward iteration scheme A.3.2 Recursive decimation scheme A.3.3 Renormalization decimation algorithm A.4 Improved RGF+RDA A.5 Performance test A.5.1 Random test matrix A.5.2 Transport through carbon nanotubes A.6 Summary and conclusions B Strong localization in defective carbon nanotubes: a recursive Green’s function study (New J. Phys. 16 (2014), 123026) B.1 Introduction B.2 Theoretical framework B.2.1 Transport formalism B.2.2 Recursive Green’s function formalism B.2.3 Electronic structure B.2.4 Strong localization B.3 Modeling details of the defective system B.4 Results and discussion B.4.1 Single defects B.4.2 Randomly distributed defects B.4.3 Localization exponent B.4.4 Diameter dependence and temperature dependence of the localization exponent B.5 Summary and conclusions Supplementary material C Electronic transport in metallic carbon nanotubes with mixed defects within the strong localization regime (Comput. Mater. Sci. 138 (2017), 49–57) C.1 Introduction C.2 Theoretical framework C.3 Modeling details C.4 Results and discussion C.4.1 Conductance C.4.2 Localization exponent C.4.3 Influence of temperature C.4.4 Conductance estimation C.5 Summary and conclusions D An improved Green’s function algorithm applied to quantum transport in carbon nanotubes (arXiv: 1806.02039) D.1 Introduction D.2 Electronic transport D.3 Decimation technique and renormalization-decimation algorithm D.4 Renormalization-decimation algorithm for electrodes with long unit cells D.4.1 Surface Green’s functions D.4.2 Bulk Green’s functions and electrode density of states D.5 Complexity measure and performance test D.6 Exemplary results D.7 Summary and conclusions E Electronic transport through defective semiconducting carbon nanotubes (J. Phys. Commun. 2 (2018), 105012) E.1 Introduction E.2 Theoretical framework E.3 Modeling details E.4 Results and discussion E.4.1 Transmission and transport regimes E.4.2 Energy dependent localization exponent and elastic mean free path E.4.3 Conductance, effective localization exponent and effective elastic mean free path E.5 Summary and conclusions Supplementary material F Influence of defect-induced deformations on electron transport in carbon nanotubes (J. Phys. Commun. 2 (2018), 115023) F.1 Introduction F.2 Theory F.3 Results F.4 Summary and conclusions 3 Ongoing work 4 Summary and outlook 4.1 Summary 4.2 Outlook 5 Appendix 5.1 Bandstructure of graphene 5.2 Quantum transport theory and Landauer-Büttiker formula References List of figures List of tables Acknowledgement Selbstständigkeitserklärung Curriculum vitae List of publications

Page generated in 0.0449 seconds