• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 600
  • 96
  • 85
  • 76
  • 37
  • 10
  • 7
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1224
  • 282
  • 154
  • 143
  • 143
  • 121
  • 117
  • 100
  • 94
  • 75
  • 66
  • 65
  • 62
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Morphology and Development of Droplet Deformation Under Flow Within Microfluidic Devices

Mulligan, Molly Katlin 01 February 2012 (has links)
Microfluidics is the science of processing microliters or less of fluid at a time in a channel with dimensions on the order of microns. The small size of the channels allows fluid properties to be studied in a world dominated by viscosity, surface tension, and diffusion rather than gravity and inertia. Microfluidic droplet generation is a well studied and understood phenomena, which has attracted attention due to its potential applications in biology, medicine, chemistry and a wide range of industries. This dissertation adds to the field of microfluidic droplet studies by studying individual droplet deformation and the process of scaling-up microfluidic devices for industrial use. The study of droplet deformation under extensional and mixed shear and extensional flows was performed within a microfluidic device. Droplets were generated using a flow-focusing device and then sent through a hyperbolic contraction downstream of the droplet generator. The hyperbolic contraction allowed the smallest droplets to be deformed by purely extensional flows and for the larger droplets to experience mixed extensional and shear flows. The shear resulted from the proximity of the droplet to the walls of the microfluidic channel. The continuous phase in all of these devices was oil and the dispersed phase was water, an aqueous surfactant solution, or an aqueous suspension of colloidal particles. Droplet deformation dynamics are affected by the use of surfactants and colloidal particles, which are commonly used to stabilize emulsion droplets again coalescence. Microfluidic droplet generating devices have many potential industrial applications, however, due to the low output of product from a single droplet generating device, their potential has not been realized. Using six parallel flow-focusing droplet generators on a single chip, the process of microfluidic droplet formation can be scaled up, thus resulting in a higher output of droplets. The tuning of droplet size and production frequency can be achieved on chip by varying the outlet tubing lengths, thus allowing for a single device to be used to generate a range of droplet sizes.
152

Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications

Cavazos, Omar 12 1900 (has links)
Optical microlasers have been used in different engineering fields and for sensing various applications. They have been used in biomedical fields in applications such as for detecting protein biomarkers for cancer and for measuring biomechanical properties. The goal of this work is to propose a microfluidic-based fabrication method for fabricating optical polymer based microlasers, which has advantages, over current methods, such us the fabrication time, the contained cost, and the reproducibility of the microlaser's size. The microfluidic setup consisted of microfluidic pumps and a flow focusing droplet generator chip made of polydimethylsiloxane (PDMS). Parameters such as the flow rate (Q) and the pressure (P) of both continuous and dispersed phases are taken into account for determining the microlaser's size and a MATLAB imaging tool is used to reduce the microlaser's diameter estimation. In addition, two applications are discussed: i) electric field measurements via resonator doped with Di-Anepps-4 voltage sensitive dye, and ii) strain measurements in a 3D printed bone-like structure to mimic biomedical implantable sensors.
153

Fabrication and Utilization of Microfluidic Devices to Study Mechanical Properties of BT-20 and Hs 578T Human Breast Cancer Cells

Burdette, Aaron J. January 2014 (has links)
No description available.
154

High Throughput Particle Separation Using Differential Fermat Spiral Microchannel with Variable Channel Width

Amin, Abdullah January 2014 (has links)
No description available.
155

Embedded Passivated-Electrode Insulator-Based Dielectrophoretic  Chromatography

Ervin, Allen Dale 18 August 2020 (has links)
The detection and identification of particles within fluid samples is key in the prevention of the spreading of disease. This has created a growing need for devices able to successfully separate and identify multiple particles for this purpose while operating at a high enough throughput to be applicable in the field. A well investigated method of manipulating particles in this way is Dielectrophoresis (DEP), which is the use of varied electric fields gradients to generate a force on small particles. The strength of DEP depends of the properties of the particle medium, the signal generating the electric field, and the properties of the particles themselves. This method and its interaction with all small particles, including biological particles such as blood and cancer cells, has allowed devices utilizing this idea to be investigated for various biological purposes. This thesis investigates methods to increase the throughput of these types of devices in order to increase their ability to process large amounts of samples in reasonable amounts of time. This is done in primarily two methods. One approach uses the application of chromatographic methods to DEP devices to separate particles by altering their individual transit time through a device, allowing identification during constant flow. Another method is through mass parallel channels which each individually operate as a standard DEP particle trapping device. This allows for the summation of the maximum flow through the device due to its design layout. / Master of Science / Micrometer scale devices are popular for the identification, separation, and characterization of micron scale particles. This includes uses in biological fields for the manipulation of particles such as blood cells, cancer cells, and bacteria. A common method of manipulating these particles is Dielectrophoresis, a force that causes particles to be repelled or attracted to geometric designs within the device generated by an applied electric field. The strength and direction of this force on the particles is dependent on the properties of the electrical signal applied to the device, the physical properties of the particles, such as size and shape, and the properties of the medium the particles are suspended in within the device. Biological devices utilizing this force have been tested before, allowing for particles to be separated out of mixed particle solutions. Most of these devices operate by moving through very little material at one time, somewhere in the microliter per hour range. This thesis explores attempts to increase the rate at which samples can be processed by these devices in multiple ways. Chapter 2 explores methods of DEP by applying Chromatography principles, which is to constantly move samples through the device at a high rate and slow the target particles, so they exit the device at a different time than other particles. Chapter 3 investigates increasing device throughput by replicating a standard DEP channel multiple times on one device so that several may operate all at once.
156

Electrokinetic Detection of Sepsis Biomarkers in Dehydrated/Rehydrated Hydrogel

Shahriari, Shadi January 2024 (has links)
According to the third international consensus definition (sepsis-3), sepsis is characterized as life-threatening organ dysfunction resulting from an uncontrolled host response to infection. Sepsis stands as a prominent contributor to worldwide mortality. A study revealed approximately 50 million reported cases of sepsis and 11 million associated deaths worldwide, constituting nearly 20% of all global fatalities. Various biomarkers have been investigated for sepsis prognosis including Procalcitonin (PCT), C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), and protein C. In addition to proteomic markers genomic biomarkers have also been investigated for sepsis. For instance, research indicates a substantial rise in plasma cell-free DNA (cfDNA) and total circulating histones levels during sepsis, correlating with its severity and mortality. The complexity arises in creating a measurement tool for sepsis, given the diverse nature of these biomarkers, each requiring distinct detection methods. The objective of this doctoral thesis is to develop a low-cost fully integrated microfluidic device for detecting a genomic biomarker (cfDNA) and a proteomic biomarker (total circulating histones) using a new method for integration of hydrogels inside microfluidic devices during the fabrication process. This method involves using porous and fibrous membranes as scaffolds to support gels. The scaffold facilitates the drying and reconstitution of these gels without any loss of shape or leakage, making it advantageous in various applications, especially in point-of-care (POC) devices where long-term storage of gels inside the device is required. This hydrogel integration method was applied to demonstrate gel electrophoretic concentration and isoelectric trapping of cfDNA and histones respectively in rehydrated agarose gates with proper pH embedded in a porous membrane in a microfluidic device. Then, these two detections were performed in a single fully integrated microfluidic device. Additionally, nonspecific fluorescent dyes were incorporated within the device, eliminating the necessity for off-chip sample preparation. This enables direct testing of plasma samples without the need to label DNA and histones with fluorescent dyes beforehand. In all the fabrication steps of the microfluidic device, xurography, a cost-effective and rapid fabrication method, was utilized. This device demonstrated the effective separation of cfDNA and histones in the agarose gates in a total time of 20 minutes, employing 10 and 30 Volts for cfDNA and histone accumulation, respectively. This device could be further developed to create a POC device for the quantification of cfDNA and histones simultaneously in severe sepsis patients plasma sample. / Thesis / Doctor of Philosophy (PhD)
157

A Mathematical-Experimental Strategy to Decode the Complex Molecular Basis for Neutrophil Migratory Decision-Making

Boribong, Brittany Phatana 08 July 2020 (has links)
Neutrophils are the innate immune system's first line of defense in response to an infection. During an infection in the tissue, chemical cues called chemoattractants are released, which signal neutrophils to exit circulation and enter the tissue. Once in the tissue, neutrophils directionally migrate in response to the chemoattractant and toward the site of infection in a process called chemotaxis. At the site of infection, they initiate antimicrobial responses to clear the infection and resolve inflammation, restoring homeostasis. However, neutrophils are exposed to multiple chemoattractants and must prioritize these signals in order to correctly migrate to the appropriate site. The ability of neutrophils to properly undergo chemotaxis in the presence of infection and inflammation is crucial for resolution of inflammation and pathogen clearance. It has been recently shown that when pre-conditioned with bacterial endotoxin (LPS), innate immune function can become dysregulated. Neutrophils start to display altered antimicrobial response as well as dysfunctional migration patterns. This behavior has been seen in patients with sepsis, where a person's immune system overreacts to an infection, leading to systemic inflammation throughout the body, causing tissue damage, multiple organ failure, and in many cases, death. We explore the effects of inflammation on neutrophil migratory patterns and decision-making within chemotaxis. Additionally, to understand how inflammation within disease impacts chemotaxis, we measure the difference between neutrophils from healthy individuals and those from septic patients. We approached this using a combination of experimental and computational techniques. We developed a microfluidic assay to measure neutrophil decision-making in a competitive chemoattractant environment between an end-target (fMLP) and intermediary (LTB4) chemoattractant. Additionally, we probed for the expression level of molecules related to neutrophil chemotaxis. We also built a system of ordinary differential equations to model the dynamics of the molecular interactions underlying neutrophil chemotaxis. Our results showed that when neutrophils were induced into a highly inflammatory state, they prioritized pro-inflammatory signals over pro-resolution signals and displayed dysfunctional migration patterns. Similarly, neutrophils from patients with sepsis also displayed dysregulated migration patterns. This aberrant neutrophil chemotaxis may be implicated in the pathogenesis of sepsis, where accumulation of neutrophils in off-target organs is often seen. These results shed light onto the directional migratory decision-making of neutrophils exposed to inflammatory signals. Understanding these mechanisms may lead to the development of pro-resolution therapies that correct the neutrophil compass and reduce off-target organ damage. / Doctor of Philosophy / Neutrophils are innate immune cells that act as the first line of defense toward an infection. During an infection, chemical signals are released, stimulating neutrophils to migrate toward that specific site of infection. Once the cells are in the tissue, they can clear the pathogen and resolve inflammation. However, when neutrophils are migrating in the tissue, they are overwhelmed with multiple signals, directing them toward different sites. These signals must be prioritized by the cell so they can properly migrate toward the correct location. It has been recently shown that neutrophils that have been preconditioned into inflammatory states will display dysfunctional migration patterns. They are unable to migrate to the site of infection and instead migrate to healthy tissue, where they can cause damage. This has been shown in patients with sepsis, which is a condition where a person's immune system overreacts to an infection, causing inflammation throughout the body, leading to tissue damage and multiple organ failure. Our work explores the impact of inflammation on neutrophil migration patterns and the ability of the cell to properly prioritize when stimulated by multiple chemical signals. Additionally, we look at how neutrophils from healthy individuals differ from neutrophils from patients with sepsis, to understand how inflammation within disease impacts cellular migration. We approach this both experimentally and computationally. We designed a microfluidic assay to measure neutrophil migration in the presence of two competing chemical signals. We also measured the expression levels of molecules relevant to cell migration. We also built a mathematical model to investigate the molecular interactions underlying these processes. These results shed light on how inflammation impacts neutrophil migration and its role in inflammatory diseases.
158

Electrically actuated microfluidic methods of sample preparation for isothermal amplification assays

Shahid, Ali January 2018 (has links)
Waterborne or foodborne diseases are caused by consuming contaminated fluids or foods. The presence of pathogenic microorganisms can contaminate food or drinking water. These microorganisms can cause sickness even if they are present in minimal concentrations. The World Health Organization (WHO) has defined the standards for clean drinking water as the absence of E. coli in a 100 mL collected volume. Contaminated water or food can cause many diseases, and diarrhea is one of a prominent disease. Early detection of contamination in food or drinking water is critical. Conventional culture-based methods are time-consuming, labour intensive, and not suitable for on-site testing. Nucleic acid-based tests are sensitive and can rapidly detect pathogens. Microfluidic technology can play a significant role to develop low-cost, rapid, integrated, and portable nucleic acid-based detection devices. Microfluidic systems for isothermal amplification assays can be classified into two groups such as droplet-based and chamber-based systems. In this thesis, both droplet-based and chamber-based approaches were used to build the microfluidic methods for isothermal amplification assays. First, a simple electromechanical probe (tweezers) was developed that can manipulate a small aqueous droplet in a bi-layer oil phase. The tweezer consisted of two needles positioned close to each other and used polarization of the aqueous droplet in an applied electrical field to confine the droplet between the needles with minimal solid contact. AC electric potential was applied to the two metal electrodes. Droplet acquired a charge from the high voltage electrode and consequently performed an oscillatory motion with the same electrode. This droplet motion was controlled using two parameters of electric potential and frequency of the applied signal. Initially, electrically actuated droplet (0.3 µL) motion was investigated for a range of applied potential (400-960 Volts) and frequencies (0.1-1000 Hz). The droplet motion with high voltage electrode was characterized into three modes such as detachment, oscillation, and attachment. Mechanical motion of tweezer was used to transport droplet to various positions. Consequently, operations such as transportation, extraction, and merging were demonstrated. First, droplet (5 µL) transportation was characterized under the applied potential of 2000 Volts at various frequencies (5 to 1000 Hz). The droplet was successfully transported to the speed of 15 mm/s at higher frequencies (100 or 1000 Hz). Droplets of various volumes (12-80 µL) were extracted by increasing applied electric potential, from 0 to 6000 Volts at 5 Hz. Then, the operation of droplets merging was demonstrated using operational conditions for electrical tweezer. Finally, electrical tweezer was used to prepare samples for isothermal amplification assays. Two droplets consisted of various reagents of isothermal amplification assays, were transported and merged using the electrical tweezer. Then, a merged droplet (25 µL) was transported and immobilized in the amplification zone. The temperature of the amplification zone (~65°C) was maintained using an in-situ heater. DNA amplification was verified by measuring the off-chip end-point fluorescence intensity of isothermal assays. Second, an integrated microfluidic device has been developed to prepare a sample for isothermal amplification assays. And in-situ real-time amplification assays were performed to detect bacteria. The device consisted of two chambers (lysis and amplification) connected through a microchannel. A low-cost fabrication method was introduced to embed two resistive wire heaters around both chambers. Initially, bacteria cells were thermally lysed in the lysis chamber at 92°C for 5 min. Then, DNA was electrophoretically transported from lysis to the amplification chamber. The electric potential of 10 Volts was applied for 10 min for DNA transportation. Next, transported DNA was amplified at 65°C and DNA amplification was detected by measuring in-situ fluorescence intensity in the real-time format. The operation of the integrated microfluidic device was demonstrated in three steps. 1) Operation of individual components. 2) Operation of two components in a coupled format. 3) Integrated operation of three components with measurement of fluorescent intensity in a real-time format. The bacteria samples with the concentration of 100 CFU/mL were detected in less than one hour. / Thesis / Doctor of Philosophy (PhD)
159

New toolsets to understand environmental sensation and variability in the aging process

Zhan, Mei 07 January 2016 (has links)
Aging is a complex process by which a combination of environmental, genetic and stochastic factors generate whole-system changes that modify organ and tissue function and alter physiological processes. Over the last few decades, many genetic and environmental modulators of aging have been found to be highly conserved between humans and a diverse group of model organisms. Yet, an integrative understanding of how these environmental and genetic variables interact over time in a whole organism to modulate the systemic changes involved in aging is lacking. The goal of this thesis project is to advance a systems perspective of aging by providing the experimental tools and conceptual framework for dissecting the regulatory connection between environmental inputs, molecular outputs and long term aging phenotypes in Caenorhabditis elegans, an experimentally tractable multi-cellular model for aging. Specifically, this work advances the quantitative imaging toolsets available to biologists by developing and refining microfluidic, hardware, computer vision, and software integration tools for high-throughput, high-content imaging of C. elegans. As a result of these technological advances, new roles for the TGF-beta and serotonin signaling pathways in encoding environmental food signals to influence longevity were uncovered and quantitatively characterized. Moreover, this work develops and integrates new microfluidic technologies with off-chip support systems to establish a platform for long-term tracking of the health and longevity trajectories of large numbers of individual C. elegans. The capabilities of this platform have the potential to address many important questions in aging including addressing environmental determinants of aging, the sources of inter-individual variability, the time course of aging-related declines and the effects of interventional strategies to improve health outcomes. Together, the toolsets for quantitative imaging and the long-term culture platform permit the large-scale investigation of both the internal state and long-term behavioral and health outputs of an important multicellular model organism for aging.
160

Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications

Tang, Qi, Liang, Min, Lu, Yi, Wong, Pak, Wilmink, Gerald, Zhang, Donna, Xin, Hao 04 April 2016 (has links)
THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 degrees C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells.

Page generated in 0.0455 seconds