• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 13
  • 11
  • 8
  • 8
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 110
  • 90
  • 69
  • 68
  • 65
  • 55
  • 43
  • 41
  • 38
  • 36
  • 35
  • 32
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Microgrid as a Cyber-Physical System: Dynamics and Control

Lee, Lung-An 15 May 2023 (has links)
As a result of climate change, extreme events occur more frequently and at higher severity, causing catastrophic power outages with significant economic losses. Microgrids are deployed as a technology to enhance power system resilience. A microgrid may include one or more distributed energy resources (DERs), including synchronous generators, solar panels, wind turbines, and energy storage systems which are decentralized power sources primarily in a distribution system to enable system recovery from catastrophic events. Microgrids can be operated in a utility-connected mode or an islanded mode in separation with the hosting transmission or distribution system. As major disasters occur, intentional islanding of a microgrid is a strategy to serve critical loads, within or outside the microgrids, until the utility service is restored. To operate microgrids, dispatch and control capabilities are required that would significantly improve the dynamic performance of the microgrid. An islanded microgrid can be used to serve critical load as a resiliency source when a severe outage occurs. In an islanded mode, control of a microgrid relies on the communication system significantly. Hence, microgrids are cyber-physical systems and, therefore, the cyber system plays a crucial role in the performance of the cyber-power system. Improper parameters of the cyber system can result in instability of a microgrid system. Simplification of the networked control system model is needed to enhance the computational performance, making the analytical method practical for large-scale power systems. To reduce the emission of carbon dioxide and alleviate the impact of climate change, the electric power industry has been integrating renewable energy into the power grid. The high penetration of renewable energy at an unprecedented level also raises new issues for the power grid, e.g., low inertia, degraded power quality, and higher uncertainties. Power electronics technology is used for power conversion of renewable energy. As the level of penetration of renewable energy increases, the inverter-based resources (IBRs) are being installed at a fast pace on the power grid. Compared to conventional synchronous generators (SGs), a major technical challenge of IBRs is their low inertia which can lead to system instability. In this context, the work of this dissertation results in major contributions regarding control algorithms for microgrid resilience, stability, and cyber-physical systems. Specifically, three novel contributions are presented: 1) A coordinated control scheme is proposed to achieve the goals of power dispatch and system regulation for an islanded microgrid. The proposed control scheme improves system dynamics; 2) A method is developed for the determination of critical values for the data reporting period and communication delay. Based on the proposed method, a 2-dimensional stability region of a microgrid in the space of cyber parameters is derived and critical values of cyber parameters are identified based on the stability region; 3) A control scheme is proposed to improve system stability of a hybrid-DER microgrid. The analysis serves to illustrate the stability regions of the hybrid-DER microgrid. A control methodology based on two-time scale decomposition is developed to stabilize the system. / Doctor of Philosophy / Climate change is causing more frequent and severe weather events, resulting in catastrophic power outages and significant economic losses. To enhance power system resilience, microgrids are proposed as a solution. Microgrids consist of one or more distributed energy resources, such as solar panels, wind turbines, and energy storage systems, which can be operated in a utility-connected or islanded mode. Microgrids can operate in an islanded mode to serve critical loads when an extended outage of the utility grid occurs. Proper dispatch and control capabilities are necessary for the operation and control. However, the performance of a microgrid, especially in an islanded mode, is dependent on the communication system. Excessive cyber latencies can result in system instability of the microgrid. To reduce carbon dioxide emissions, the power industry is integrating an unprecedented level of renewable energy into the power grid. Power electronics technology is being used for power conversion of renewable energy, and inverter-based resources are being installed at a fast pace into the power grid. One major technical challenge of inverter-based resources is their low inertia, which can lead to system instability. To address these issues, this dissertation presents three novel contributions: a coordinated control scheme to improve the microgrid dynamics and perform power dispatch and system regulation functions, a method to determine critical values of cyber parameters based on stability regions, and a control scheme to improve system stability of a hybrid-DER microgrid. These contributions provide valuable concepts and methodologies for resilient and stable microgrids that are critical to meet the operational and control challenges of an electricity infrastructure with a high-level penetration of renewable energy.
22

Examination of Power Quality Control within a Cost-based Microgrid Architecture

Chettiyar, Thanigasalam January 2013 (has links)
No description available.
23

Applications of impedance-based fault locating methods in power systems

Min, Kyung Woo 18 September 2014 (has links)
The concentration of this work is in estimating fault locations in power systems. After describing the basic concepts of fault locating methods, this work describes improving the fault location estimates, applying the fault locating methods, and implementing the methods in a software. Every work described in the Chapter will be evaluated whether by actual field data or simulated data based on field parameters. / text
24

Microgrid availability during natural disasters

Krishnamurthy, Vaidyanathan 28 October 2014 (has links)
A common issue with the power grid during natural disasters is low availability. Many critical applications that are required during and after natural disasters, for rescue and logistical operations require highly available power supplies. Microgrids with distributed generation resources along with the grid provide promising solutions in order to improve the availability of power supply during natural disasters. However, distributed generators (DGs) such as diesel gensets depend on lifelines such as transportation networks whose behavior during disasters affects the genset fuel delivery systems and as a result affect the availability. Renewable sources depend on natural phenomena that have both deterministic as well as stochastic aspects to their behavior, which usually results in high variability in the output. Therefore DGs require energy storage in order to make them dispatchable sources. The microgrids availability depends on the availability characteristics of its distributed generators and energy storage and their dependent infrastructure, the distribution architecture and the power electronic interfaces. This dissertation presents models to evaluate the availability of power supply from the various distributed energy resources of a microgrid during natural disasters. The stochastic behavior of the distributed generators, storage and interfaces are modeled using Markov processes and the effect of the distribution network on availability is also considered. The presented models supported by empirical data can be hence used for microgrid planning. / text
25

Evaluation of DC supply protection for efficient energy delivery in low voltage applications / Évaluation de l'alimentation en courant continu pour une distribution d'énergie efficace dans les appareils domestiques

Ma, Thi Thuong Huyen 05 April 2018 (has links)
Actuellement, il y a une baisse du prix des ressources énergétiques distribuées, en particulier l'énergie solaire photovoltaïque, conduisant à la croissance significative de leur capacité d'installation dans de nombreux pays. D'autre part, les politiques encourageant l'efficacité énergétique ont favorisé le développement de charges DC dans les zones domestiques, telles que l'éclairage LED, les ordinateurs,, les téléphones, les téléviseurs, les moteurs DC efficaces et les véhicules électriques. Grace à ce changement, le système de distribution de microgrid DC devient plus attractive que le système de distribution à courant alternatif traditionnel. Les avantages principaux du microgrid DC sont l'efficacité énergétique plus élevée, plus facile à intégrer avec les sources d'énergie distribuées et le système de stockage. Alors que de nombreuses recherches se concentrent sur les stratégies de contrôle et la gestion de l'énergie dans le microgrid DC, sa protection reçoit une attention insuffisante et un manque de réglementation et d'expériences. La protection dans les réseaux DC est plus difficile que dans le réseau AC en raison de l'arc continu, de la valeur plus élevée du courant de courtcircuit et du taux de défaut de montée. En outre, dans les réseaux distribués à courant continu sont composés de nombreux dispositifs de commutation électroniques et semi-conducteurs, qui ne supportent le courant de défaut que quelques dizaines de microsecondes. Les disjoncteurs mécaniques, qui ont un temps de réponse de quelques dizaines de millisecondes, ne semblent pas satisfaire aux exigences de sécurité du microréseau à courant continu. L'absence d'un dispositif de protection efficace constitue un obstacle au développement du microgrid DC dans le système distribué. Cette thèse propose un disjoncteur DC auto-alimenté à courant continu utilisant normalement JFET SiC, qui offre un excellent dispositif de protection pour les microgrids DC grâce à son temps de réponse rapide et ses faibles pertes à l'état passant. La conception du disjoncteur DC à semi-conducteurs vise à répondre à deux objectifs: temps de réponse rapide et fiabilité. Les spécifications conçues et les énergies critiques qui entraînent la destruction du disjoncteur sont identifiées sur la base des résultats mesurés d'un JFET populaire dans le commerce. Un pilote de protection très rapide et fiable basé sur une topologie à convertisseur flyback avant est utilisé pour générer une tension négative suffisante pour tourner et maintenir le JFET SiC. Le convertisseur sera activé chaque fois que le disjoncteur détecte des défauts de court-circuit en détectant la tension de drain-source de JFET et crée une tension négative s'applique à la porte de JFET. Pour éviter une défaillance de la porte par surtension au niveau de la grille du JFET, la tension de sortie du convertisseur de retour vers l'avant est régulée à l'aide de la mesure coté primaire. Les résultats expérimentaux sur le prototype du disjoncteur DC ont validé les principes de fonctionnement proposés et ont confirmé que le disjoncteur DC à semi-conducteurs proposé peut interrompre le défaut en 3 μs. D'un autre côté, un modèle du JFET normalement activé dans l'environnement Matlab/Simulink est construit pour étudier les comportements du SSCB pendant une durée de court-circuit. L'accord entre la simulation et les résultats expérimentaux confirment que ce modèle JFET peut être utilisé pour simuler le fonctionnement d'un disjoncteur DC et dans l'étude du fonctionnement du microgrid DC pendant le processus de défaut et de compensation / Currently, there is a drop in the price of distributed energy resources, especially solar PVs, which leads to a significant growth of the installed capacities in many countries. On the other hand, policies encouraging energy efficiency have promoted the development of DC loads in domestic areas, such as LEDs lighting, computers, telephones, televisions, efficient DC motors and electric vehicles. Corresponding to these changes in sources and loads, DC microgrid distribution system becomes more attractive than the traditional AC distribution system. The main advantages of the DC microgrid are higher energy efficiency, easier in integrating with distributed energy sources and storage systems. While many studies concentrate on the control strategies and energy management in the DC microgrid, the protection still receives inadequate attention and lack of regulations and experiences. Protection in DC grids is more complex than AC grids due to the continuous arc, higher short circuit current value and fault rate of rising. Furthermore, the DC distributed grids are composed of many electronic and semiconductor switching devices, which only sustain the fault currents of some tens of microseconds. Mechanical circuit breakers, which have a response time in tens of milliseconds, seem not to meet the safety requirement of DC microgrids. The lack of effective protection devices is a barrier to the development of DC microgrids in the distributed systems. This thesis proposes a self-power solid state DC circuit breaker using normally-on SiC JFET, which offers a great protection device for DC microgrids due to its fast response time and low on-state losses. The design of the solid state DC circuit breaker aims to meet two objectives: fast response time and high reliability. The designed specifications and critical energies that result in the destruction of the circuit breaker are identified on the basis of the experiments of a commercial normally-on JFET. In addition, a very fast and reliable protection driver based on a forward-flyback converter topology is employed to generate a sufficient negative voltage to turn and hold off the SiC JFET. The converter will be activated whenever short-circuit faults are detected by sensing the drain-source voltage, then creating a negative voltage applied to the gate of JFET. To avoid gate failure by overvoltage at the gate of JFET, the output voltage of the forward-flyback converter is regulated using Primary Side Sensing technique. Experimental results validated the working principle of the proposed solid state DC circuit breaker with fault clearing time less than 3 μs. Additionally, a model of the normally-on JFET in Matlab/Simulink environment is built for exploring the behaviors of the solid-state DC circuit breaker during short-circuit faults. The agreement between the simulation and experimental results confirms that this JFET model can be appropriately used for the investigation of solid state DC circuit breaker operations and DC microgrids in general during fault evens and clearing fault processes
26

Adaptive Energy Storage System Control for Microgrid Stability Enhancement

Zhang, Tan 26 April 2018 (has links)
Microgrids are local power systems of different sizes located inside the distribution systems. Each microgrid contains a group of interconnected loads and distributed energy resources that acts as a single controllable entity with respect to the grid. Their islanding operation capabilities during emergencies improve the resiliency and reliability of the electric energy supply. Due to its low kinetic energy storage capacity, maintaining microgrid stability is challenging under system contingencies and unpredictable power generation from renewable resources. This dissertation highlights the potential benefits of flexibly utilizing the battery energy storage systems to enhance the stability of microgrids. The main contribution of this research consists in the development of a storage converter controller with an additional stability margin that enables it to improve microgrid frequency and voltage regulation as well as its induction motor post-fault speed recovery. This new autonomous control technique is implemented by adaptively setting the converter controller parameters based on its estimated phase-locked loop frequency deviation and terminal voltage magnitude measurement. This work also assists in the microgrid design process by determining the normalized minimum storage converter sizing under a wide range of microgrid motor inertia, loading and fault clearing time with both symmetrical and asymmetrical fault types. This study evaluates the expandability of the proposed control methodologies under an unbalanced meshed microgrid with fault-induced feeder switching and multiple contingencies in addition to random power output from renewable generators. The favorable results demonstrate the robust storage converter controller performance under a dynamic changing microgrid environment.
27

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm

Therien, Scott G.M. 01 June 2010 (has links)
Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation of distributed generation units; the new generation may result in undesirable operating conditions, or system failure. This paper investigates the primary issues involved with the implementation of distributed generation and maintaining the integrity of the power grid. The issues addressed include power flow, system protections, voltage regulation, intermittency, harmonics, and islanding. A case study is also presented to illustrate how these issues can be addressed when designing distributed generation installation on an existent distribution system. The case study design is performed on the campus distribution system of California Polytechnic State University, San Luis Obispo, with the design goal of implementing renewable energy sources to make the campus a net zero energy consumer.
28

PSCAD/EMTDC-Based Modeling and Analysis of a Microgrid with Renewable Energy Sources

Chu, Zhengguo 2010 May 1900 (has links)
Microgrid is a relatively new concept which has gained significant attention recently due to the increasing penetration of distributed energy sources. It brings many benefits to the traditional distribution system. Couples of microgrid testbeds in the forms of either hardware facilities or software simulation systems have been developed to study microgrid issues in many institutes throughout the world. In the work presented in this thesis, a microgrid system model in PSCAD/EMTDC was developed. The proposed microgrid system includes fundamental power system component models, two renewable energy source models (wind and solar) and one energy storage source model. Different case studies were conducted. The results from the simulation case studies showed that the proposed microgrid system in PSCAD had satisfactory performance under different scenarios with renewable energy sources. The proposed microgrid system model can be used for further research on microgrid issues.
29

Some Aspects of Microgrid Planning and Optimal Distribution Operation in the Presence of Electric Vehicles

Hafez, Omar 20 December 2011 (has links)
Increase in energy demand is one of the major challenges that utilities are faced with, thus resulting in an increase in environmental pollution and global warming. The transport sector has a significant share of the energy demand and is a major contribution of emissions to the environment. In Canada, almost 35% of the total energy demand is from the transport sector and it is the second largest source of greenhouse gas (GHG) emissions. The government of Ontario has aimed to move toward a green energy economy, thus resulting in increased penetration of renewable energy sources as well as Plug-in hybrid electric vehicle (PHEV) technology. Penetration of renewable energy sources into microgrids are gradually being recognized as important alternatives in supply side planning. This thesis focuses on the optimal design, planning, sizing and operation of a hybrid, renewable energy based microgrid with the goal of minimizing the lifecycle cost, while taking into account environmental emissions. Four different configurations including a diesel-only, a fully renewable-based, a diesel-renewable mixed, and an external-grid connected microgrid are designed, to compare and evaluate their economics, operational performance and environmental emissions. Analysis is also carried out to determine the break-even economics for a grid-connected microgrid. The well-known energy modeling software for hybrid renewable energy systems, HOMER, is used in the studies reported in this thesis. An optimal power flow (OPF) based optimization framework considering two different objectives, minimizing feeder losses and PHEV charging cost, are presented to understand the impact of PHEV charging on distribution networks. Three different charging periods are considered and the impact of the Ontario Time-of-Use (TOU) tariff on PHEV charging schedules is examined. The impact of PHEV charging on distribution systems in the presence of renewable energy sources is discussed by extending the developed OPF based model to include the contribution of renewable energy sources. The proposed model is evaluated under a variety of scenarios.
30

Incorporating DFIG-Based Wind Power Generator in Microgird Frequency Stabilization

Fakhari Moghadam Arani, Mohammadreza January 2011 (has links)
Although wind power as a renewable energy is assumed to be an all-round advantageous source of energy, its intermittent nature can cause difficulties, especially in the islanding mode of operation. Conventional synchronous generators can help to compensate for wind fluctuations, but the slow behavior of such systems may result in stability concerns. In this study, the virtual inertia method, which imitates the kinetic inertia of a synchronous generator, is used to improve the system’s dynamic behavior. Since the proposed method incorporates no long-term power regulation, it requires no mass storage device and is thus economical. To preclude additional costs, a rotating mass connected to the Doubly Fed Induction Generator (DFIG) shaft or a super-capacitor connected to the DC-link on a back-to-back converter of a wind power generator could be used. The concept and the proposed control methods are discussed in detail, and eigen-value analysis is used to study how the proposed method improves system stability. As well, the advantages and disadvantages of using DFIG rotating mass or a super-capacitor as the virtual inertia source are compared. The proposed approach also shows that while virtual inertia is not incorporated directly in long-term frequency and power regulation, it may indirectly enhance the system’s steady-state behavior. A time domain simulation is used to verify the results of the analytical studies.

Page generated in 0.0502 seconds