Spelling suggestions: "subject:"[een] MODEL REDUCTION"" "subject:"[enn] MODEL REDUCTION""
41 |
[en] MODELING AND SIMULATION OF FLEXIBLE STRUCTURES: CABLES AND PLATES / [pt] MODELAGEM E SIMULAÇÃO DE ESTRUTURAS FLEXÍVEIS: CABOS E PLACASEULER BOTELHO ANTUNES 27 April 2011 (has links)
[pt] Este texto pode ser dividido em duas partes: a primeira trata da modelagem
de sistemas dinâmicos, passando da chamada formulação forte ao conceito
de formulação variacional, sem antes deixar de apresentar ferramentas básicas
do cálculo variacional e o Princípio de Hamilton. Os conceitos são
exemplificados por duas estruturas que acompanham todo o texto: um cabo
unidimensional e uma placa. Ainda na primeira parte, é apresentado o problema
de autovalor de sistemas contínuos e são mostradas as propriedades
dos operadores autoadjuntos. Ao longo desta etapa e no apêndice, soluções
analíticas para o problema de autovalor são desenvolvidas. Por ser a obtenção
das soluções analíticas dos problemas por demais engenhosas ou até
mesmo impossíveis, um outro caminho é proposto: a aproximação de soluções,
sendo este o tema da segunda parte deste texto. Ela é iniciada pela
apresentação de métodos de discretização dos sistemas contínuos sem deixar
de exemplificá-los. Os métodos são usados como ferramentas de aproximação
dos modos de vibração. São abordados os Métodos de Ritz, de Galerkin
e o da Colocação. As funções usadas no primeiro e no segundo são geradas
pelo Método dos Elementos Finitos e as aproximações dos modos por este
método são usadas na redução de sistemas, para então se obter a resposta
dinâmica dado um carregamento. Toda a teoria é reforçada ao final com
dois problemas práticos: um cabo durante uma operação de abastecimento
de uma plataforma de petróleo e o outro de uma placa durante uma operação
de jateamento. Por último, mas não menos importante, um capítulo
é dedicado ao Método da Colocação, onde polinômios de ordem superior,
os polinômios de Chebyshev, são usados para a aproximação com o uso de
diferentes grades de interpolação, a grade de Chebyshev-Gauss e a grade de
Gauss-Lobatto. / [en] This text can be divided into two parts: the first deals with modeling of
dynamic systems, passing through the so-called strong formulation to the
concept of variational formulation, considering the basic tools of variational
calculus and the Hamilton Principle. The concepts are exemplified by two
structures that follows the whole text: a unidimensional cable and a plate.
Still in the first part, the eigenvalue problem of continuous systems is presented
and the properties of self-adjoint operators are shown. Throughout this
stage and at the appendix, analytical solutions to the eigenvalue problem
are developed. As to get the problems analytical solutions may be too ingenious
or even impossible, another way is proposed: the use of approximate
solutions, which is the theme of the second part of this text. It starts by
presenting methods of discretization of continuous systems, exemplifying
them. The methods are used as tools for approximation of the vibration
modes. The Ritz, Galerkin and Collocation methods are exposed. The functions
used at the first and at the second are generated by the Finite Element
Method and the modes approximated by this method are used to reduce the
systems to then obtain the dynamic response to a given dynamic loading.
The whole theory is reinforced with two practical problems at the end: one
is about a cable during a supplying operation of an oil rig and the other is
about a plate during a shot blastening operation. Last but not least, a chapter
is devoted to the Collocation Method, where higher-order polynomials,
the Chebyshev polynomials, are used to the approximation using different
interpolation grids, the Chebyshev-Gauss and the Gauss-Lobatto grid.
|
42 |
Solving Linear Matrix Equations via Rational Iterative SchemesBenner, Peter, Quintana-Ortí, Enrique, Quintana-Ortí, Gregorio 01 September 2006 (has links) (PDF)
We investigate the numerical solution of stable Sylvester equations via iterative schemes proposed for computing the sign function of a matrix. In particular, we discuss how the rational iterations for the matrix sign function can efficiently be adapted to the special structure implied by the Sylvester equation. For Sylvester equations with factored constant term as those arising in model reduction or image restoration, we derive an algorithm that computes the solution in factored form directly. We also suggest convergence criteria for the resulting iterations and compare the accuracy and performance of the resulting methods with existing Sylvester solvers. The algorithms proposed here are easy to parallelize. We report on the parallelization of those algorithms and demonstrate their high efficiency and scalability using experimental results obtained on a cluster of Intel Pentium Xeon processors.
|
43 |
Réduction dimensionnelle pour la simulation de la fatigue des métaux / Dimensional reduction for the simulation of metal fatigueNasri, Mohamed Aziz 02 May 2017 (has links)
Afin de tenir compte de l'amorçage et de la propagation des fissures en fatigue, il est nécessaire de connaître l'historique des différentes quantités mécaniques dans la zone d'amorçage. Cela nécessite une connaissance des états mécaniques cycliques stabilisés. D'un point de vue numérique, les simulations numériques d'agrégats polycristallin avec les méthodes de résolution classiques ne sont réalisées que pour quelques cycles. Ce travail présente le développement des méthodes accélérées de calcul pour réduire le temps de calcul de la méthode des Éléments Finis dans le cas des simulations d'agrégats polycristallins soumis à un chargement cyclique. La première idée est de maintenir la matrice de rigidité constante afin d'effectuer une seule factorisation. Un premier algorithme a été écrit dans ce sens avec une résolution incrémentale et non incrémentale. La deuxième proposition est d'utiliser une méthode de réduction dimensionnelle en espace/temps couplé à la méthode des éléments finis. La PGD a été choisie. Cette méthode permet de découpler les variables spatiales et temporelles et les champs de déplacement ne sont calculés que pour un certain nombre de modes. Deux possibilités d'utilisation de la méthode PGD dans le cadre de la plasticité ont été proposées. La troisième proposition consiste à utiliser la stratégie de réduction adaptative APR comme solveur afin de résoudre un modèle d'ordre réduit en termes de nombre de ddl. Une stratégie incrémentale d'amélioration de la qualité de la base pour un certain intervalle de temps choisi a été mis en place dans ce cadre. Quatre possibilités d'utilisation de la méthode APR ont été proposées. L'analyse des performances des différentes méthodes est effectuée tout d'abord sur un problème élasto-plastique classique tridimensionnel présentant un défaut sphérique, ensuite à l'échelle de la microstructure avec un calcul visco-élasto-plastique d'agrégats polycristallins tridimensionnels. Les analyses ont montré que les réponses mécaniques macroscopique et mésoscopique des méthodes de réduction de modèle sont très proches de la méthode incrémentale. Le temps des simulations a été réduit par les différentes méthodes. Les gains sont plus importants quand on augmente la taille des maillages et la non linéarité du problème. Toutefois, l'idée de garder la matrice de rigidité constante avec une résolution incrémentale a permis un gain de temps encore plus conséquent à l'échelle de la microstructure. / In order to take account of fatigue cracks initiation and growth, it is necessary to know the history of the various mechanical quantities in fatigue initiation site. This requires knowledge of the stabilized cyclic mechanical states. From a numerical approach, numerical simulation of polycrystalline aggregates with conventional resolution methods are only carried out for a few cycles. This work presents the development of accelerated numerical methods to reduce the computation time of the Finite Element method in the case of numerical simulation of polycrystalline aggregates under cyclic loading. The first idea is to keep a constant stiffness matrix during overall simulation in order to get just one single factorization to carry out. An algorithm has been proposed in this sense with an incremental and non incremental resolution. The second proposal is based on the use of a model reduction method coupled with the finite element method to solve space/time problem. The PGD has been selected. This method allows to decouple spatial and time coordinates and the displacement fields are computed for a certain number of modes. Two possibilities have been proposed to implement the PGD method in the context of plasticity. The third proposal is to use an a priori adaptative approach based on the use of APR strategy to solve a reduced order model in terms of number of degrees of freedom. An incremental adaptive strategie has been proposed in order to master the quality of the reduced-basis for a certain time steps. Four possibilities of using the APR method have been proposed. The applicability and the performance of the different methods have been first analyzed on a conventional three-dimensional elastoplastic problem with a spherical defect, then on the scale of the microstructure with numerical simulation of polycrystalline aggregates under cyclic elasto-visco-plastic loading. The analyzes have shown that the macroscopic and mesoscopic mechanical responses of the model reduction methods are very close to the incremental method. The simulation time has been reduced by the different methods. The time gains are more significant by increasing the size of the meshes and the non-linearity of the problem. Nevertheless, the idea of keeping a constant stiffness matrix with the incremental method has enabled more CPU time saving at the microstructural scale.
|
44 |
PGD espace-temps adaptée pour le traitement de problèmes paramétrés / Time-space PGD for solving parameterized problemsHeyberger, Christophe 01 April 2014 (has links)
Cette thèse s'intéresse à la question récurrente qu'est la résolution d'un problème pour un grand nombre de configurations différentes. Malgré l'augmentation constante de la puissance de calcul que l'on connait aujourd'hui, le traitement direct d'un tel problème reste souvent hors de portée. La technique qui est développée ici est basée sur l'utilisation de la Proper Generalized Decomposition (PGD) dans le cadre de la méthode LATIN. On étudie tout d’abord la capacité de cette technique de réduction de modèle à résoudre un problème paramétré pour un espace de conception donné. Lors du traitement d’un tel problème, on génère une base réduite que l’on peut réutiliser et éventuellement enrichir en traitant un par un les problèmes correspondants aux jeux de paramètres étudiés. Le but devient alors de développer une stratégie, inspirée par la méthode « Reduced Basis », afin d’explorer de façon rationnelle l’espace des paramètres. L’objectif étant de construire, avec le minimum de résolutions, une base réduite « complète » qui permet de résoudre tous les autres problèmes de l’espace de conception sans enrichir cette base. On commence dès lors par montrer l’existence d’une telle base complète en extrayant les informations les plus pertinentes des solutions PGD d’un problème pour tous les jeux de paramètres de l’espace de conception. On propose ensuite une stratégie rationnelle pour construire cette base complète sans la nécessité préalable de la résolution du problème pour tous les jeux de paramètres. Enfin, les performances de la méthode proposée sont illustrées sur plusieurs exemples, montrant des gains conséquents lorsque des études récurrentes doivent être menées. / This thesis deals with the recurring question of the resolution of a problem for many different configu- rations, which can lead to highly expensive computations when using a direct treatment. The technique which is presented here is based on the use of Proper Generalized Decomposition (PGD) in the framework of the LATIN method. The feasibility of this model reduction technique approach is studied to compute the solution of a parametrized problem for a given space of parameters. For that purpose, a Reduced-Order Basis is generated, reused and eventually enriched, by treating, one-by-one, all the various parameter sets. The aim is to develop a strategy, inspired by the Reduced Basis method, to explore rationally the space of parameters. Then, the objective is to build, with the minimum of resolutions, a ‘‘complete’’ basis that enables to solve all the other problems without enriching the basis. We first exemplify the existence of a such complete basis by extracting the most relevant information from the PGD solutions of the problem for all the sets in the space of parameters. Secondly, we propose a rational strategy to build this complete basis without preliminary solving the problem for all the sets of parameters. Finally, the capabilities of the proposed method are illustrated through a variety of examples, showing substantial gains when recurrent studies need to be carried out.
|
45 |
Modeling problems using Bayes' rule for finite impulse response models and Markov models / 有限インパルス応答モデルとマルコフモデルに対するベイズ則を用いたモデリング問題Zheng, Man 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23321号 / 情博第757号 / 新制||情||129(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 太田 快人, 教授 山下 信雄, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
|
46 |
Simplified grinding mill circuit models for use in process controlLe Roux, Johan Derik 10 June 2013 (has links)
A grinding mill circuit forms a crucial part in the energy-intensive comminution process of extracting valuable metals and minerals from mined ore. The ability to control the grinding mill circuit is of primary importance to achieve the desired product specification with regards to quality and production rate. In order to achieve control objectives an accurate dynamic model of the milling circuit is required. Phenomenological models are preferred over linear-time-invariant models since the latter cannot describe the non-linear behaviour of the process. However, the available phenomenological models of grinding mill circuits are usually complex, use large parameter sets and are mostly aimed towards steady-state design of grinding mill circuits. This study investigates simplified non-linear dynamic models of grinding mill circuits suitable for process controller design. In the first part of this study, the number of size classes in a cumulative rates model of a grinding mill circuit is reduced to determine the minimum number required to provide a reasonably accurate model of the circuit for process control. Each reduced size class set is used to create a non-linear cumulative rates model which is linearized to design a linear model predictive controller. The accuracy of a model is determined by the ability of the corresponding model predictive controller to control important process variables in the grinding mill circuit as represented by the full non-linear cumulative rates model. The second part of the study validates a simple and novel non-linear model of a run-of-mine grinding mill circuit developed for process control and estimation purposes. This model is named the Hulbert-model and makes use of the minimum number of states and parameters necessary to produce responses that are qualitatively accurate. It consists of separate feeder, mill, sump and hydrocyclone modules that can be connected to model different circuit configurations. The model uses five states: rocks, solids, fines, water and steel balls. Rocks are defined as too large to be discharged from the mill, whereas solids, defined as particles small enough to leave the mill, consist of out-of-specification coarse ore and in-specification fine ore fractions. The model incorporates a unique prediction of the rheology of the slurry within the mill. A new hydrocyclone model is also presented. The Hulbert-model parameters are fitted to an existing plant’s sampling campaign data and a step-wise procedure is given to fit the model to steady-state data. Simulation test results of the model are compared to sampling campaign data of the same plant at different steady-state conditions. / Dissertation (MEng)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted
|
47 |
Mechanical modeling and numerical methods for poromechanics : Application to myocardium perfusion / Modélisation mécanique et méthodes numériques pour la poromécanique : Applications à la perfusion du myocardeBurtschell, Bruno 30 September 2016 (has links)
Cette thèse est dédiée au développement de méthodes numériques pour la poromécanique, et à leur application dans un contexte de modélisation cardiaque.Elle est motivée par la prise en compte, dans les modèles de coeur humain, du réseau coronarien qui perfuse le myocarde, afin de mieux décrire les maladies vasculaires coronariennes.Nous appuyant sur des travaux existants, nous proposons un modèle de coeur perfusé, ainsi qu'une réduction 0D permettant de reproduire, à moindre coût de calcul, un cycle cardiaque réaliste avec masse et pression de perfusion. Le modèle mis au point nous permet de reproduire des phénomènes physiologiques auparavant inaccessibles dans les modèles, et d'une grande importance pour des applications cliniques, tels que la vasodilatation et les pathologies coronariennes.L'intégration d'un compartiment poreux pour représenter le myocarde perfusé dans les modèles 3D représente un défi technique d'un autre ordre. Nous inspirant des schémas en temps de type splitting établis en interaction fluide-structure pour modéliser les vaisseaux sanguins, nous proposons une discrétisation semi-implicite d'une formulation générale de poromécanique, satisfaisant un bilan d'énergie au niveau discret. Afin d'illustrer et valider notre démarche, l'environnement de calcul élément finis FreeFem++ nous permet de reproduire des cas tests classiques de gonflement et de drainage de milieux poreux en 2D, puis de vérifier le bilan énergétique discret.Enfin, motivés par l'étude de la discrétisation spatiale de notre problème, nous établissons dans un cadre linéaire un résultat de convergence totale du schéma sous conditions. Cela nous permet de proposer une méthode d'implémentation facile à mettre en oeuvre et présentant de bons résultats de stabilité. FreeFem++ nous permet à nouveau de valider nos résultats en illustrant les pathologies numériques associées à l'incompressibilité, et leur traitement efficace par les stratégies proposées, dans le cadre linéaire puis dans une situation plus générale. / This thesis is dedicated to the development of numerical methods for poromechanics, and to their application in a cardiac modeling context. It is motivated by the introduction into existing cardiac models of the coronary network that perfuses the myocardium, to better describe coronary vascular diseases.Drawing our inspiration from existing works, we propose a perfused heart model, and a 0D reduction allowing the cost-effective reproduction of a realistic cardiac cycle with perfusion mass and pressure. The model derived illustrates physiological phenomena inaccessible in former models, and with great clinical application potential, such as vasodilatation and coronary diseases.The integration of a porous compartment to represent the perfused myocardium within 3D models is more challenging. Relying on splitting time schemes established for fluid-structure interaction to model blood vessels, we propose a semi-implicit discretization of a general poromechanics formulation, satisfying a discrete energy balance. In order to illustrate and validate our approach, we reproduce in the finite element software FreeFem++ classical swelling and drainage 2D test cases, and we monitor the discrete energy balance.Finally, motivated by the study of spatial discretization aspects of our problem, we establish in a linear framework a conditional total convergence result. This enables us to propose a computational method easy to implement and presenting good stability results. FreeFem++ enables us again to validate our results, illustrating numerical pathologies associated with incompressibility, and their efficient treatment with the proposed strategies, first in a linear framework and then in a more general situation.
|
48 |
Analysis of the stress gradient effect in Fretting-Fatigue through a description based on nonlocal intensity factors / Analyse des effets de gradient en fretting-fatigue grâce à une description du phénomène basée sur des facteurs d’intensité non locaux.Montebello, Claudio 26 November 2015 (has links)
Nous proposons dans ce manuscrit une nouvelle méthode pour prendre en compte l’effet du gradient en Fretting-fatigue. Les champs mécaniques présents à proximité du front de contact sont décrits à travers des facteurs d’intensité non locaux. L’objectif est d’aboutir à une description du champ de vitesse sous la forme d’une somme de termes exprimés chacun comme le produit d’un facteur d’intensité (Is, Ia, Ic), qui dépend des chargements macroscopiques appliqués à l’ensemble et d’une fonction de forme (ds, da, dc), qui est liée à la géométrie locale du contact. Cette description est obtenue à travers un processus non intrusif de post-processing des résultats obtenus avec des calculs à éléments finis. De plus, elle a été pensée pour être implémentée dans un contexte industriel. En pratique, pour chaque chargement macroscopique et pour chaque géométrie, il est possible de calculer un ensemble de facteurs d’intensité non locaux qui permettent de décrire les champs mécaniques locaux près du front de contact. Cette description non locale a l’avantage d’être (i) indépendante de la géométrie du contact employé et (ii) utilisable dans des modèles à éléments finis utilisés dans l’industrie qui sont caractérisés par des maillages plus grossiers par rapport à ceux utilisés pour étudier le fretting-fatigue dans des milieux académiques. Une étude est menée pour vérifier que les facteurs d’intensité non locaux peuvent être utilisés pour transposer les résultats expérimentaux d’une géométrie à une autre. / In this manuscript a new method to describe the stress gradient effect in fretting-fatigue is proposed. It is based on the description of the mechanical fields arising close to the contact edges through nonlocal intensity factors. For this purpose, the kinetic field around the contact ends is partitioned into a summation of multiple terms, each one expressed as the product between intensity factors, Is, Ia, Ic, depending on the macroscopic loads applied to the mechanical assembly, and spatial reference fields, ds, da, dc, depending on the local geometry of the part. This description is obtained through nonintrusive post-processing of FE computation and is conceived in order to be easily implementable in the industrial context. As a matter of fact, for any given macroscopic load and geometry, a set of nonlocal intensity factors is computed that permits to characterize the mechanical fields close to the contact edges. Such nonlocal description has the advantage of being (i) geometry independent so that the nonlocal intensity factors can be used to compare laboratory test with real-scale industrial assembly, (ii) applicable to industrial FE models usually characterized by rougher meshes compared to the ones used to describe fretting-fatigue in the academic context. The procedure is applied to fretting-fatigue test data in order to verify whether the nonlocal intensity factors can be used to transpose experimental results to different contact geometries from the one in which they have been obtained.
|
49 |
Modeling and Performance Analysis of a 10-Speed Automatic Transmission for X-in-the-Loop SimulationThomas, Clayton Austin 11 December 2018 (has links)
No description available.
|
50 |
Stability analysis and control design of spatially developing flowsBagheri, Shervin January 2008 (has links)
Methods in hydrodynamic stability, systems and control theory are applied to spatially developing flows, where the flow is not required to vary slowly in the streamwise direction. A substantial part of the thesis presents a theoretical framework for the stability analysis, input-output behavior, model reduction and control design for fluid dynamical systems using examples on the linear complex Ginzburg-Landau equation. The framework is then applied to high dimensional systems arising from the discretized Navier–Stokes equations. In particular, global stability analysis of the three-dimensional jet in cross flow and control design of two-dimensional disturbances in the flat-plate boundary layer are performed. Finally, a parametric study of the passive control of two-dimensional disturbances in a flat-plate boundary layer using streamwise streaks is presented. / QC 20101103
|
Page generated in 0.0828 seconds