Spelling suggestions: "subject:"[een] NUCLEATION"" "subject:"[enn] NUCLEATION""
321 |
A NEW METHOD FOR THE STATISTICAL EVALUATION OF NATURAL GAS HYDRATE NUCLEATION AT ELEVATED PRESSUREKozielski, K.A., Becker, N.C., Hartley, P.G., Wilson, P.W., Haymet, A.D.J., Gudimetla, R., Ballard, A.L., Kini, R. 07 1900 (has links)
Nucleation is a stochastic process, most accurately represented by a probability distribution. Obtaining sufficient data to define this probability distribution is a laborious process. Here, we describe a novel instrument capable of the automated determination of hydrate nucleation probability under non-equilibrium conditions for a range of natural gas mixtures at pressures up to 10MPa. The instrument is based on the automated lag time apparatus (ALTA) which was developed to study the stochastic nature of nucleation in ambient pressure systems [1].We demonstrate that the probability distribution represents a robust and reproducible tool for the quantitative evaluation of hydrate formation risk under pseudo-realistic pressure conditions.
|
322 |
HETEROGENEOUS NUCLEATION OF CLATHRATES FROM SUPERCOOLED THF/WATER MIXTURES AND THE EFFECT OF AN ADDED CATALYSTWilson, P.W., Haymet, A.D.J. 07 1900 (has links)
The statistics of liquid-to-crystal nucleation are measured for clathrate-forming mixtures of tetrahydrofuran and water using an automatic lag time apparatus (ALTA). We measure the nucleation temperature where a single sample is repeatedly cooled, nucleated and thawed. This is done for a series of tetrahydrofuran concentrations and in several different sample tubes since the nucleation is heterogeneous and occurring on the tube wall. The measurements are also done at the same concentrations and tubes but with an added catalyst, a single crystal of silver iodide. We discuss the need for this type of measurement if the true nucleation temperature of the clathrate is to be found. Comparisons are also made with our high pressure data on real-world clathrate formers.
|
323 |
MODELING THE METHANE HYDRATE FORMATION IN AN AQUEOUS FILM SUBMITED TO STEADY COOLINGAvendaño-Gómez, Juan Ramón, García-Sánchez, Fernando, Gurrola, Dynora Vázquez 07 1900 (has links)
The aim of this work is to model the thermal evolution inside a hydrate forming system which is submitted
to an imposed steady cooling. The study system is a cylindrical thin film of aqueous solution at 19 Mpa, the
methane is the hydrate forming molecule and it is assumed that methane is homogeneously dissolved in the
aqueous phase. The model in this work takes into account two factors involved in the hydrate
crystallization: 1) the stochastic nature of crystallization that causes sub-cooling and 2) the heat source term
due to the exothermic enthalpy of hydrate formation. The model equation is based on the resolution of the
continuity equation in terms of a heat balance. The crystallization of the methane hydrate occurs at
supercooling conditions (Tcryst < TF), besides, the heat released during crystallization interferes with the
imposed condition of steady decrease of temperature around the system. Thus, the inclusion of the heat
source term has to be considered in order to take into account the influence of crystallization. The rate of
heat released during the crystallization is governed by the probability of nucleation J(T ). The results
provided by the model equation subjected to boundary conditions allow depict the evolution of temperature
in the dispersed phase. The most singular point in the temperature–time curve is the onset time of hydrate
crystallization. Three time intervals characterize the temperature evolution during the steady cooling: (1)
linear cooling, (2) hydrate formation with a release of heat, (3) a last interval of steady cooling.
|
324 |
Microstructure and texture evolution during annealing of plane strain compressed fcc metalsMiszczyk, Magdalena Maria 14 June 2013 (has links) (PDF)
The present research program is a renewed attempt at explaining the transformation mechanisms. The experimental investigations has focused on a model analysis of transformations which occur in single crystals, with stable orientations, i.e. Goss{110}<001> and brass{110}<112>, the deformation is carried out by channel-die compression to simulate the rolling process of thin sheets. Next, the samples were annealed at temperatures of primary recrystallization. The analysis of crystallographic transformations was conducted on metals from a wide spectrum of stacking fault energy: low - Cu-2%Al, average- Cu and Ni to high Al and Al-1%Mn. At work were analyzed the mechanisms controlling the initial stages of recrystallization. Detailed analysis of disorientation across the recrystallization front clearly showed that the initial grain orientations were not accidental. The axes of disorientation in the relationship across the front of recrystallization were near normal in {111} planes, but only sporadically covered with the <111> direction. The distribution of the recrystallization angle rotation in relation to the preferences presented through the formation of two maxima values near 30 ° and 45-55 °.
|
325 |
Bubble Formation in a Horizontal Channel at Subcooled Flow ConditionShaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
|
326 |
Use of the Confined Impinging Jet Reactor for production of nanoscale Iron Oxide particlesSiddiqui, Shad Waheed Unknown Date
No description available.
|
327 |
A fundamental study of bubble-particle interactions through zeta-potential distribution analysisWu, Chendi Unknown Date
No description available.
|
328 |
Bubble Formation in a Horizontal Channel at Subcooled Flow ConditionShaban Nejad, Saman 27 November 2013 (has links)
Bubble nucleation at subcooled flow boiling condition in a horizontal annular channel with a square cross section by the use of high-speed camera is investigated. The channel represents a scaled-down version of a single rod of CANDU reactor core. The experiments were performed by the use of water at pressures between 1-3 atm, constant heat flux of 0.124 MW/m2, liquid bulk subcooling of 32-1oC and mean flow velocities of 0.3-0.4 m/s. Bubble lift-off diameters were obtained from direct high speed videography. The developed model for the bubble lift-off diameter was obtained by analyzing the forces acting on a bubble. Furthermore, a model for the bubble growth rate constant was suggested. The proposed model was then compared to experimental data and it has shown a good agreement with the experimental data. Additionally, the effects of liquid bulk subcooling, liquid pressure and mean flow velocity on bubble lift-off diameter were investigated.
|
329 |
Numerical simulations of nucleation and growth phenomenaMonette, Liza January 1987 (has links)
No description available.
|
330 |
An immersion freezing study of mineral dust and bacterial ice nucleating particlesHartmann, Susan 03 July 2015 (has links) (PDF)
Ice formation largely influences the properties of clouds and hence it has an important impact on weather and climate. Primary ice formation is a consequence of either homogeneous or heterogeneous ice nucleation. The latter process is catalyzed by a foreign substance called Ice Nucleating Particle (INP). Mineral dust particles were found to contribute to atmospheric INPs. Most types of mineral dust are ice active below -20 °C. In contrast, atmospheric observations indicate that immersion freezing as one of the most important heterogeneous ice nucleation processes can occur at temperatures higher than -15 °C. One possible explanation for cloud glaciation at high temperatures might be the presence of biological material (e.g. bacteria) inducing ice nucleation. Our fundamental process and even qualitative understanding concerning atmospheric heterogeneous ice nucleation is limited. In the framework of the present thesis, experimental and theoretical work was carried out to improve the basic understanding of the immersion freezing behavior of mineral dust and bacterial INPs. On the basis of model simulations immersion freezing experiments were designed at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). The immersion freezing behavior of mineral dust and bacterial INPs was studied in dependence of temperature and particle surface area/number at LACIS. As a results of the present thesis, it was found that the immersion freezing behavior of kaolinite being a proxy of mineral dust INPs does not depend on the droplet volume, but on the particle surface area. The kaolinite particles investigated caused freezing below -30 °C. In contrast, Ice Nucleation Active (INA) protein complexes that are attributed to bacterial INPs were found to induce freezing at -7 °C. Furthermore, it was shown that the ice nucleation activity of protein complexes is very similar regardless of whether the INA protein complex is attached to the outer cell membrane of intact bacteria or to cell membrane fragments. The immersion freezing ability depends on the number and type of INA protein complexes present in the droplet ensemble. The immersion freezing ability of mineral dust and bacterial INPs was parameterized accounting for the time effect. With this, results from literature could be reproduced for both INP types. These parameterizations can be used in e.g. cloud resolving atmospheric models.
|
Page generated in 0.035 seconds