Spelling suggestions: "subject:"[een] OLED"" "subject:"[enn] OLED""
111 |
The OLED Emitter Ir(btp) 2 (acac) : photophysical properties of the triplet state studied by highly-resolving spectroscopyFinkenzeller, Walter J. January 2008 (has links)
Regensburg, Univ., Diss., 2008.
|
112 |
Role of polythiophene based interlayers from electrochemical processes on organic light emitting diodesZhang, Fapei. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Dresden.
|
113 |
Etude de composants électroluminescents à fluorescence retardée thermiquement activé à base de la 1,3,5 triazine et leur application au sein de la troisième génération des diodes organiques électroluminescentes (OLEDs) / Investigation of delayed fluorescence materials based on the 1 3 5 triazine and its application for the third OLED's generationMarghad, Ikbal 03 December 2015 (has links)
La nouvelle technologie innovatrice OLEDs (diodes organiques électroluminescentes) ne cesse de susciter l'engouement des scientifiques ainsi que les recherches à leurs égards. Ces dispositifs à base de matériaux organiques s'appliquent dans quasiment tous les domaines tels que l'éclairage, l'affichage...Une découverte récente vient d'apporter sa pierre à l'édifice en mettant au point une nouvelle troisième génération d'OLEDs. Cette révélation consiste en la réduction du coût des matériaux des OLEDs en utilisant des matériaux peu onéreux dits à fluorescence retardée. C'est dans cette optique que s'inscrit ce travail de thèse qui porte sur l'étude de ce type de matériaux pour les applications dans les OLEDs. Cette thèse est décomposée en deux principales parties. Dans un premier temps, nous avons étudié et synthétisé des matériaux pour cette nouvelle génération d'OLED en se basant sur un modèle de molécules existant. Ce dernier représente des dérivés de triazine-carbazole connus pour leurs propriétés adéquates aux OLEDs. Cette étude a démontré pour la première fois le caractère de fluorescence retardée de ces molécules. Nous avons par la suite caractérisé ces molécules au sein des OLEDs. Les résultats montrent l'efficacité de ces molécules. Dans un deuxième temps nous nous sommes intéressés à l'étude de molécules innovantes. Ainsi, des molécules dotées de fluorescences retardées et innovantes ont été synthétisées. Cette synthèse a été effectuée par une méthode très avantageuse. Par ailleurs, la structure et propriétés de ces molécules indiquent qu'elles sont dotées de fluorescences retardées. Ainsi, il est important de poursuivre ce travail, en évaluant les propriétés de ces molécules synthétisées, ainsi que de les caractériser au sein des OLEDs. / Recently, the synthesis of free metal materials for organic LEDs by Uoyama et al adds a third kind of luminescence, named thermally activated delayed fluorescence (TADF). The added value of this discovery is to lower significantly OLED cost thanks to the metal-free structure of these so-called hyper-fluorescent molecules. This work reports on this recent discovery in OLED's. We first studied the thermally activated delayed fluorescence from an existing molecular model. The latter, fulfil the condition of the delayed fluorescence and are based from triazine-carbazole derivatives. The results revealed for thefirst time the exhibition of the delayed fluorescence from this existing model. In a second part, a novel hyperfluorescent molecule have been synthesized following the design rules for the delayed fluorescence molecules. The synthesis was done by a method based on an attractive process. Furthermore, the structure and properties of these new materials indicate that these molecules are expected to exhibit delayed fluorescent. Thus, it is important to continue this work by evaluating the properties of these molecules and the OLEDs made from these materials.
|
114 |
Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical PropertiesJanuary 2014 (has links)
abstract: Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl components in the ligand. These complexes possess interesting luminescent properties including ultra-narrow emission and metal assisted delayed fluorescence (MADF) emission. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2014
|
115 |
Phosphorescent Organic Light Emitting Diodes Implementing Platinum ComplexesJanuary 2014 (has links)
abstract: Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases.
In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated.
Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2014
|
116 |
OLED : Evaluation and clarification of the new Organic Light Emitting Display technologyStark, Patrik, Westling, Daniel January 2002 (has links)
Organic Light Emitting Displays (OLEDs) are a new type of thin emissive displays predicted to possess superior properties to existing techniques e.g. Liquid Crystal Display (LCD). The main advantages are low power consumption and a thin display structure. This report contains an explanation of the emissive OLED technology, its functionality and the physics of the organic layer structure in an OLED. The technology is described with respect to the two classes of organic materials used in displays, small molecules and conjugated polymers. The information is derived from a study of literature and from different measurements performed on a full-colour OLED microdisplay, based on colour filters. The evaluation of the OLED revealed the main disadvantage of an unsatisfactory lifetime of approximately only one week. The results of the measurements and study are furthermore compared to the traditional LCD technology. A conclusion with the advantages and drawbacks with the OLED technology summarises the report together with a short analysis of the future for OLEDs, partly achieved through a written enquiry sent to approximately 20 possible OLED manufactures.
|
117 |
A study of magnetoresistance in organic semiconductors with varying strengths of hyperfine and spin-orbit couplingSheng, Yugang 01 January 2008 (has links)
This thesis concerns itself with the scientific study of the recently discovered organic magnetoresistance (OMAR) whose underlying mechanism is currently not known with certainty. As an introduction, we briefly review the major findings from prior work done by my colleagues. They found that OMAR can be as large as ~10% magnetoresistance at 10 mT magnetic fields at room temperature. Both OMAR and other kinds of magnetic field effect data in organics can be fitted using the empirical laws B^2/(B^2+B_0^2) or B^2/(|B|+B_0)^2, dependent on material. The fitting parameter B_0 is a measure of the characteristic magnetic field strength of OMAR.
We explore the dependence of B_0 on material parameters to clarify the origin of OMAR. Various pi-conjugated semiconductor OMAR devices were studied to explore the possibility that hyperfine interaction causes OMAR. For a quantitative analysis of the experiments, we developed a theoretical fitting formula to relate B_0 to the hyperfine coupling strength.
In addition, organic materials with different spin-orbit coupling strengths were also measured. Fluorescence and phosphorescence spectroscopies were used to estimate the spin-orbit coupling strength from the measured spectra. For analyzing our measurements, we developed a fitting formula from the time-dependent Schrodinger equation that takes into account the combined effect of hyperfine and spin-orbit coupling on spin-dynamics. We found that in the case of strong spin-orbit coupling, it dominates the behavior, resulting in magnetic field effect traces that are much wider than those in ordinary organics. However, a small cone remains at zero field with a width equal to the hyperfine coupling strength. We find qualitative agreement between the experimental results and the model.
We also investigated the question whether OMAR is related to an excitonic effect, or is primarily a transport effect. We measured the magnetic field effects on current, photocurrent and electroluminescence to address this question. By varying the injection efficiency of the minority carriers, we show that OMAR most likely is not an excitonic effect.
Our results provide strong evidence in support of the claim that OMAR is caused by spin-dynamics. However, further study is required to study the mechanism connecting spin-dynamics and conductivity.
|
118 |
White Top-Emitting OLEDs on Metal SubstratesFreitag, Patricia 18 April 2011 (has links)
This work focusses on the development of top-emitting white organic light-emitting diodes (OLEDs), which can be fabricated on metal substrates. Bottom-emitting OLEDs have been studied intensively over the years and show promising perspectives for future commercial applications in general lighting. The development of top-emitting devices has fallen behind despite the opportunities to produce these devices also on low-cost opaque substrates. This is due to the challenges of top-light-emission concerning the achievement of a broad and well-balanced white emission spectrum in presence of a strong microcavity. The following work is a further step towards the detailed understanding and optimization of white top-emitting OLEDs.
First, the available metal substrates and the deposited silver electrodes are examined microscopically to determine their surface characteristics and morphology in order to assess their applicability for thin-film organic stacks of OLEDs. The examination shows the suitability for untreated Alanod metal substrates, which display low surface roughness and almost no surface defects. For the deposited silver anodes, investigations via AFM show a strong influence of the deposition rate on the surface roughness.
In the main part of the work top-emissive devices with both hybrid and all-phosphorescent architecture are investigated, in which three or four emitter materials are utilized to achieve maximum performance. The feasibility for top-emitting white OLEDs in first and second order devices is investigated via optical simulations, using the example of a three-color hybrid OLED. Here, the concept of a dielectric capping layer on top of the cathode is an essential criterion for broadband and nearly angle independent light emission. The main focus concerning the investigation of fabricated devices is the optimization of the organic stacks to achieve high efficiencies as well as excellent color quality of warm white emission.
The optimization of the hybrid layer structure based on three emitter materials using a combined aluminum-silver anode mirror resulted in luminous efficacies up to 13.3 lm/W and 5.3 % external quantum efficiency. Optical analysis by means of simulation revealed a superior position concerning internal quantum efficiency compared to bottom-emitting devices with similar layer structure. The devices show an enhanced emission in forward direction compared to an ideal Lambertian emitter, which is highly preferred for lighting applications. The color quality - especially for devices based on a pure Al anode - is showing excellent color coordinates near the Planckian locus and color rending indices up to 77. The introduction of an additional yellow emitter material improves the luminous efficacy up to values of 16.1 lm/W and external quantum efficiencies of 5.9 %.
With the choice of a all-phosphorescent approach, using orange-red, light blue and green emitter materials, luminous efficacies of 21.7 lm/W are realized with external quantum efficiencies of 8.5 %. Thereby, color coordinates of (x, y) = (0.41, 0.45) are achieved. Moreover, the application of different crystalline capping layers and alternative cathode materials aim at a scattering of light that further reduces the angular dependence of emission. Experiments with the crystallizing material BPhen and thin carbon nanotube films (CNT) are performed. Heated BPhen capping layer with a thickness of 250 nm show a lower color shift compared to the NPB reference capping layer. Using CNT films as cathode leads to a broadband white emission at a cavity thickness of 160 nm. However, due to very high driving voltages needed, the device shows low luminous efficacy.
Finally, white top-emitting organic LEDs are successfully processed on metal substrates. A comparison of three and four color based hybrid devices reveal similar performance for the devices on glass and metal substrate. Only the devices on metal substrate show slightly higher leakaged currents. During repeated mechanical bending experiments with white devices deposited on 0.3 mm thin flexible Alanod substrates, bending radii up to 1.0 cm can be realized without device failure. / Diese Arbeit richtet ihren Schwerpunkt auf die Entwicklung von top-emittierenden weißen organischen Leuchtdioden (OLEDs), welche auch auf Metallsubstraten gefertigt werden können. Im Laufe der letzten Jahre wurden bottom-emittierende OLEDs sehr intensiv studiert, da sie vielversprechende Perspektiven für zukünftige kommerzielle Anwendungen in der Allgemeinbeleuchtung bieten. Trotz der Möglichkeit, OLEDs auch auf kostengünstigen lichtundurchlässigen Substraten fertigen zu können, blieb die Entwicklung von top-emittierenden Bauteilen dabei allerdings zurück. Dies läßt sich auf die enormen Herausforderungen von top-emittierenden OLEDs zurückführen, ein breites und ausgeglichenes weißes Abstrahlungsspektrum in Gegenwart einer Mikrokavität zu generieren. Die folgende Arbeit liefert einen Beitrag zum detaillierten Verständnis und der Optimierung von weißen top-emittierenden OLEDs.
Zunächst werden die verfügbaren Metallsubstrate und abgeschiedenen Silberelektroden auf ihre Oberflächeneigenschaften und Morphologie mikroskopisch untersucht, um damit ihre Verwendbarkeit für organische Dünnfilmstrukturen in OLEDs einzuschätzen. Die Untersuchung zeigt eine Eignung von unbehandelten Alanod Metallsubstraten auf, welche eine niedrige Oberflächenrauigkeit und fast keine Oberflächendefekte besitzen. Bei den abgeschiedenen Silberelektroden zeigen Untersuchungen mit dem Rasterkraftmikroskop eine starke Beeinflussung der Oberflächenrauigkeit durch die Aufdampfrate.
Im Hauptteil der Arbeit werden top-emittierende Dioden mit hybrid und voll-phosphoreszenter Architektur untersucht, in welcher drei oder vier Emittermaterialien verwendet werden, um eine optimale Leistungscharakteristik zu erreichen. Die Realisierbarkeit von top-emittierenden weißen OLEDs in Dioden erster und zweiter Ordnung wird durch optische Simulation am Beispiel einer dreifarb-OLED mit Hybridstruktur ermittelt. Dabei ist das Konzept der dielektrischen Deckschicht - aufgebracht auf die Kathode - ein essenzielles Kriterium für breitbandige und annähernd winkelunabhängige Lichtemission. Der Schwerpunkt im Hinblick auf die Untersuchung von hergestellten Dioden liegt in der Optimierung der organischen Schichtstrukturen, um hohe Effizienzen sowie exzellente warmweiße Farbqualität zu erreichen.
Im Rahmen der Optimierung von hybriden Schichtstrukturen basierend auf drei Emittermaterialien resultiert die Verwendung eines kombinierten Aluminium-Silber Anodenspiegels in einer Lichtausbeute von 13.3 lm/W und einer externen Quanteneffizienz von 5.3 %.Eine optische Analyse mit Hilfe von Simulationen zeigt eine überlegene Stellung hinsichtlich der internen Quanteneffizient verglichen mit bottom-emittierenden Dioden ähnlicher Schichtstruktur. Die Dioden zeigen eine verstärkte vorwärts gerichtete Emission im Vergleich zu einem idealen Lambertschen Emitter, welche in hohem Maße für Beleuchtungsanwendungen erwünscht ist. Es kann eine ausgezeichnete Farbqualität erreicht werden - insbesondere für Dioden basierend auf einer reinen Aluminiumanode - mit Farbkoordinaten nahe der Planckschen Strahlungskurve und Farbwiedergabeindizes bis zu 77. Die weitere Einführung eines zusätzlichen gelben Emittermaterials verbessert die Lichtausbeute auf Werte von 16.1 lm/W und die externe Quanteneffizient auf 5.9 %.
Mit der Wahl eines voll-phosphoreszenten Ansatzes unter der Verwendung eines orange-roten, hellblauen und grünen Emittermaterials werden Lichtausbeuten von 21.7 lm/W und externe Quanteneffizienten von 8.5 % erzielt. Damit werden Farbkoordinaten von (x, y) = (0.41, 0.45) erreicht.
Darüberhinaus zielt die Verwendung von verschiedenen kristallinen Deckschichten und alternativen Kathodenmaterialien auf eine Streuung des ausgekoppelten Lichts ab, was die Winkelabhängigkeit der Emission vermindern soll. Experimente mit dem kristallisierenden Material BPhen und dünnen Filmen aus Kohlenstoffnanoröhren werden dabei durchgeführt. Geheizte BPhen Deckschichten mit einer Schichtdicke von 250 nm zeigen eine geringere Farbverschiebung verglichen mit einer NPB Referenzdeckschicht. Die Verwendung von Kohlenstoffnanoröhren als Kathode führt zu einer breitbandigen weißen Emission bei einer Kavitätsschichtdicke von 160 nm.
Schließlich werden weiße top-emittierende organische Leuchtdioden erfolgreich auf Metallsubstraten prozessiert. Ein Vergleich von drei- und vierfarb-basierten hybriden Bauteilen zeigt ähnliche Leistungsmerkmale für Dioden auf Glas- und Metallsubstraten. Während wiederholten mechanischen Biegeexperimenten mit weißen Dioden auf 0.3 mm dicken flexiblen Alanodsubstraten können Biegeradien bis zu 1.0 cm ohne Bauteilausfall realisiert werden.
|
119 |
Synthesis and characterizations of bis-diazirines and their applications in organic electronicsDey, Kaustav 11 May 2022 (has links)
No description available.
|
120 |
POLYMER DISPERSED LIQUID CRYSTAL DROPLETS: PROPERTIES AND APPLICATIONSJiang, Jinghua 28 November 2018 (has links)
No description available.
|
Page generated in 0.0484 seconds