Spelling suggestions: "subject:"[een] OPERATING RESERVE"" "subject:"[enn] OPERATING RESERVE""
1 |
Operating reserve assessment of wind integrated power systemsKarki, Bipul 05 April 2010
Wind power is variable, uncertain, intermittent and site specific. The operating capacity credit associated with a wind farm is therefore considerably different from that assigned to a conventional generating unit and as wind penetrations in conventional power systems increase, it is vital that wind power be fully integrated in power system planning and operating protocols.<p>
The research described in this thesis is focused on the determination of the operating capacity benefits associated with adding wind power to a conventional power system. Probabilistic techniques are used to quantify the risk and operating capacity benefits under various risk criteria. A short term wind speed probability distribution and short term wind power probability distribution forecasting model is presented and a multi-state model of a wind farm is utilized to determine several operating performance indices. The concepts and developed model are illustrated by application to two published test systems. The increase in peak load carrying capability attributable to added wind power is examined under a range of system operating conditions that include the effects of seasonality, locality and wind parameter trends. The operating capacity credit associated with dependent and independent wind farms is also examined. The dependent and independent conditions provide boundary values that clearly indicate the effects of wind speed correlation. Well-being analyses which incorporate the accepted deterministic criterion in an evaluation of the system operating state probabilities is applied to the wind integrated test systems using a novel approach to calculate the operating state probabilities. Most modern power systems are interconnected to one or more other power systems and therefore have increased access and exposure to wind power. This thesis examines the risk benefits associated with wind integrated interconnected power systems under various conditions using the two test systems.<p>
The research described in this thesis clearly illustrates that the operating capacity benefits associated with wind power can be quantified and used in making generating capacity scheduling decisions in a wind integrated power system.
|
2 |
Operating reserve assessment of wind integrated power systemsKarki, Bipul 05 April 2010 (has links)
Wind power is variable, uncertain, intermittent and site specific. The operating capacity credit associated with a wind farm is therefore considerably different from that assigned to a conventional generating unit and as wind penetrations in conventional power systems increase, it is vital that wind power be fully integrated in power system planning and operating protocols.<p>
The research described in this thesis is focused on the determination of the operating capacity benefits associated with adding wind power to a conventional power system. Probabilistic techniques are used to quantify the risk and operating capacity benefits under various risk criteria. A short term wind speed probability distribution and short term wind power probability distribution forecasting model is presented and a multi-state model of a wind farm is utilized to determine several operating performance indices. The concepts and developed model are illustrated by application to two published test systems. The increase in peak load carrying capability attributable to added wind power is examined under a range of system operating conditions that include the effects of seasonality, locality and wind parameter trends. The operating capacity credit associated with dependent and independent wind farms is also examined. The dependent and independent conditions provide boundary values that clearly indicate the effects of wind speed correlation. Well-being analyses which incorporate the accepted deterministic criterion in an evaluation of the system operating state probabilities is applied to the wind integrated test systems using a novel approach to calculate the operating state probabilities. Most modern power systems are interconnected to one or more other power systems and therefore have increased access and exposure to wind power. This thesis examines the risk benefits associated with wind integrated interconnected power systems under various conditions using the two test systems.<p>
The research described in this thesis clearly illustrates that the operating capacity benefits associated with wind power can be quantified and used in making generating capacity scheduling decisions in a wind integrated power system.
|
3 |
Erstellung eines Modells zum Abruf positiver MinutenreserveWenzel, Anne 01 April 2011 (has links) (PDF)
Im Rahmen der Arbeit wurden die Daten für Minutenreserveabrufe in den Jahren 2006 und 2007 nach Regelzonen analysiert und ein stochastisches Modell erstellt. Die detaillierte Analyse der Minutenreserveabrufe ergab eine Tageszeitabhängigkeit des Auftretens von Abrufen. In den Nachtstunden erfolgten sehr wenige bis keine Abrufe. Die jeweils abgerufenen Mengen lassen ebenfalls eine Tageszeitabhängigkeit erkennen. Auffällig war, dass die Minutenreserveabrufe in der RWE-Regelzone signifikant anders als in den übrigen Regelzonen erfolgten.
Für die Modellbildung wurde ein zusammengesetzter Poisson-Prozess gewählt. Die Intensität λ blieb dabei konstant. Um die Tageszeitabhängigkeit einfließen zu lassen, wurde angenommen, dass die Mengen pro Abruf einer Normalverteilung mit tageszeitabhängigen Parametern μ und σ gehorchen. Mit Hilfe des Modells erfolgten Simulationen von Minutenreser-veabrufen für jede Regelzone. Zur Verifikation des Modells wurden die simulierten Abrufe mit den real eingetretenen Abrufen im Jahr 2008 verglichen. In Intensität der Abrufhäufigkeit und im Erwartungswert der Abrufmengen decken sich die Simulationen sehr gut mit der Realität (siehe Abbildung). Unter Anwendung des Modells lassen sich vielfältige Berechnungen beispielsweise zum Einsatz dezentraler KWK-Anlagen durchführen. In naher Zukunft ist die Er-weiterung des Modells um das in der Realität häufig eintretende Ereignis mehrerer direkt aufeinander folgender Abrufe in etwa derselben Höhe oder auch die Betrachtung negativer Minutenreserve wünschenswert.
|
4 |
Komponentenzerlegung des Regelleistungsbedarfs mit Methoden der ZeitreihenanalyseWenzel, Anne 01 April 2011 (has links) (PDF)
Im Rahmen der Arbeit wurden die minutengenauen Daten des Regelleistungsbedarfs (Summe aus Sekundärregelleistung und Minutenreserve) der Monate April bis Dezember des Jahres 2009 einer Regelzone einer Zeitreihenanalyse unterzogen und in Komponenten gemäß dem klassischen Komponentenmodell zerlegt. Diese sind die Trendkomponente, ermittelt durch einen gleitenden Durchschnitt mit der Länge einer Stunde, weiterhin zwei periodische Komponenten mit der Periodenlänge einer Stunde sowie der Periodenlänge eines Tages und die Restkomponente, welche mit einem ARIMA(2,1,5)-Prozess modelliert wurde. In der Zukunft sollte das erstellte Modell des Regelleistungsbedarfs durch Hinzunahme einer jahreszeitlichen Komponente noch verbessert werden. Dies war im Rahmen der Arbeit nicht möglich, da keine Daten über einen Zeitraum von mehreren Jahren vorhanden waren. Zusätzlich kann geprüft werden, inwiefern mit dem Komponentenmodell Prognosen durchführbar sind. Dafür sollte die Trendkomponente anders gewählt werden, da sich der hier gewählte Weg zu sehr an den Daten orientiert. Der zweite Teil der Aufgabenstellung dieser Arbeit bestand im Identifizieren inhaltlicher Komponenten, also möglicher Zusammenhänge zwischen dem Regelleistungsbedarf und verschiedenen denkbaren Ursachen. Als potentielle Ursachen wurden der Lastverlauf sowie die Windenergieeinspeisung untersucht. Zwischen der Zeitreihe des Lastverlaufs und der des Regelleistungsbedarfs bestand eine leichte positive Korrelation, zwischen der Zeitreihe der Windenergieeinspeisung und der des Regelleistungsbedarfs eine geringe negative Korrelation.
|
5 |
Erstellung eines Modells zum Abruf positiver MinutenreserveWenzel, Anne 14 November 2008 (has links)
Im Rahmen der Arbeit wurden die Daten für Minutenreserveabrufe in den Jahren 2006 und 2007 nach Regelzonen analysiert und ein stochastisches Modell erstellt. Die detaillierte Analyse der Minutenreserveabrufe ergab eine Tageszeitabhängigkeit des Auftretens von Abrufen. In den Nachtstunden erfolgten sehr wenige bis keine Abrufe. Die jeweils abgerufenen Mengen lassen ebenfalls eine Tageszeitabhängigkeit erkennen. Auffällig war, dass die Minutenreserveabrufe in der RWE-Regelzone signifikant anders als in den übrigen Regelzonen erfolgten.
Für die Modellbildung wurde ein zusammengesetzter Poisson-Prozess gewählt. Die Intensität λ blieb dabei konstant. Um die Tageszeitabhängigkeit einfließen zu lassen, wurde angenommen, dass die Mengen pro Abruf einer Normalverteilung mit tageszeitabhängigen Parametern μ und σ gehorchen. Mit Hilfe des Modells erfolgten Simulationen von Minutenreser-veabrufen für jede Regelzone. Zur Verifikation des Modells wurden die simulierten Abrufe mit den real eingetretenen Abrufen im Jahr 2008 verglichen. In Intensität der Abrufhäufigkeit und im Erwartungswert der Abrufmengen decken sich die Simulationen sehr gut mit der Realität (siehe Abbildung). Unter Anwendung des Modells lassen sich vielfältige Berechnungen beispielsweise zum Einsatz dezentraler KWK-Anlagen durchführen. In naher Zukunft ist die Er-weiterung des Modells um das in der Realität häufig eintretende Ereignis mehrerer direkt aufeinander folgender Abrufe in etwa derselben Höhe oder auch die Betrachtung negativer Minutenreserve wünschenswert.:1 Einleitung
2 Ausgangssituation
3 Analyse der Minutenreserveabrufe nach Regelzonen
4 Modellierung der abgerufenen Minutenreserve
5 Qualitätsbewertung des Modells
6 Zusammenfassung und Ausblick
|
6 |
Komponentenzerlegung des Regelleistungsbedarfs mit Methoden der ZeitreihenanalyseWenzel, Anne 29 October 2010 (has links)
Im Rahmen der Arbeit wurden die minutengenauen Daten des Regelleistungsbedarfs (Summe aus Sekundärregelleistung und Minutenreserve) der Monate April bis Dezember des Jahres 2009 einer Regelzone einer Zeitreihenanalyse unterzogen und in Komponenten gemäß dem klassischen Komponentenmodell zerlegt. Diese sind die Trendkomponente, ermittelt durch einen gleitenden Durchschnitt mit der Länge einer Stunde, weiterhin zwei periodische Komponenten mit der Periodenlänge einer Stunde sowie der Periodenlänge eines Tages und die Restkomponente, welche mit einem ARIMA(2,1,5)-Prozess modelliert wurde. In der Zukunft sollte das erstellte Modell des Regelleistungsbedarfs durch Hinzunahme einer jahreszeitlichen Komponente noch verbessert werden. Dies war im Rahmen der Arbeit nicht möglich, da keine Daten über einen Zeitraum von mehreren Jahren vorhanden waren. Zusätzlich kann geprüft werden, inwiefern mit dem Komponentenmodell Prognosen durchführbar sind. Dafür sollte die Trendkomponente anders gewählt werden, da sich der hier gewählte Weg zu sehr an den Daten orientiert. Der zweite Teil der Aufgabenstellung dieser Arbeit bestand im Identifizieren inhaltlicher Komponenten, also möglicher Zusammenhänge zwischen dem Regelleistungsbedarf und verschiedenen denkbaren Ursachen. Als potentielle Ursachen wurden der Lastverlauf sowie die Windenergieeinspeisung untersucht. Zwischen der Zeitreihe des Lastverlaufs und der des Regelleistungsbedarfs bestand eine leichte positive Korrelation, zwischen der Zeitreihe der Windenergieeinspeisung und der des Regelleistungsbedarfs eine geringe negative Korrelation.:Einleitung
1 Ausgangssituation und technische Gegebenheiten
2 Mathematische Grundlagen
3 Analyse der Regelleistungsdaten
4 Zusammenfassung und Ausblick
|
7 |
Stochastic Optimization for Integrated Energy System with Reliability Improvement Using Decomposition AlgorithmHuang, Yuping 01 January 2014 (has links)
As energy demands increase and energy resources change, the traditional energy system has been upgraded and reconstructed for human society development and sustainability. Considerable studies have been conducted in energy expansion planning and electricity generation operations by mainly considering the integration of traditional fossil fuel generation with renewable generation. Because the energy market is full of uncertainty, we realize that these uncertainties have continuously challenged market design and operations, even a national energy policy. In fact, only a few considerations were given to the optimization of energy expansion and generation taking into account the variability and uncertainty of energy supply and demand in energy markets. This usually causes an energy system unreliable to cope with unexpected changes, such as a surge in fuel price, a sudden drop of demand, or a large renewable supply fluctuation. Thus, for an overall energy system, optimizing a long-term expansion planning and market operation in a stochastic environment are crucial to improve the system's reliability and robustness. As little consideration was paid to imposing risk measure on the power management system, this dissertation discusses applying risk-constrained stochastic programming to improve the efficiency, reliability and economics of energy expansion and electric power generation, respectively. Considering the supply-demand uncertainties affecting the energy system stability, three different optimization strategies are proposed to enhance the overall reliability and sustainability of an energy system. The first strategy is to optimize the regional energy expansion planning which focuses on capacity expansion of natural gas system, power generation system and renewable energy system, in addition to transmission network. With strong support of NG and electric facilities, the second strategy provides an optimal day-ahead scheduling for electric power generation system incorporating with non-generation resources, i.e. demand response and energy storage. Because of risk aversion, this generation scheduling enables a power system qualified with higher reliability and promotes non-generation resources in smart grid. To take advantage of power generation sources, the third strategy strengthens the change of the traditional energy reserve requirements to risk constraints but ensuring the same level of systems reliability In this way we can maximize the use of existing resources to accommodate internal or/and external changes in a power system. All problems are formulated by stochastic mixed integer programming, particularly considering the uncertainties from fuel price, renewable energy output and electricity demand over time. Taking the benefit of models structure, new decomposition strategies are proposed to decompose the stochastic unit commitment problems which are then solved by an enhanced Benders Decomposition algorithm. Compared to the classic Benders Decomposition, this proposed solution approach is able to increase convergence speed and thus reduce 25% of computation times on the same cases.
|
8 |
Enhancing the Treatment of Systems Integration in Long-term Energy ModelsWelsch, Manuel January 2013 (has links)
Securing access to affordable energy services is of central importance to our societies. To do this sustainably, energy systems design should be – amongst other things – environmentally compliant and reconcile with the integrated management of potentially limiting resources. This work considers the role for so-called 'Smart Grids' to improve the delivery of energy services. It deals with the integration of renewable energy technologies to mitigate climate change. It further demonstrates an approach to harmonise potentially conflicting energy, water and land-use strategies. Each presents particular challenges to energy systems analysis. Computer aided models can help identify energy systems that most effectively meet the multiple demands placed on them. As models constitute a simple abstraction of reality, it is important to ensure that those dynamics that considerably impact results are suitably integrated. In its three parts, this thesis extends long-term energy system models to consider improved integration between: (A) supply and demand through Smart Grids; (B) timeframes by incorporating short-term operating constraints into long-term models; and (C) resource systems by linking multiple modelling tools. In Part A, the thesis explores the potential of Smart Grids to accelerate and improve electrification efforts in developing countries. Further, a long-term energy system model is enhanced to investigate the Smart Grid benefits associated with a closer integration of supply, storage and demand-side options. In Part B, the same model is extended to integrate flexibility requirements. The benefits of this integration are illustrated on an Irish case study on high levels of wind power penetrations. In Part C, an energy model is calibrated to consider climate change scenarios and linkages with land-use and water models. This serves to assess the implications of introducing biofuels on the small island developing state of Mauritius. The thesis demonstrates that too weak integration between models and resource systems can produce significantly diverging results. The system configurations derived may consequently generate different – and potentially erroneous – policy and investment insights. / Säker och prisvärd tillgång till energitjänster är en central fråga för dagens samhällen. För att tillgodose samhällen med hållbara energitjänster bör energisystemen designas för att – bland annat – möta de miljömässiga kraven samt hantera potentiellt begränsade resurser. Den här avhandlingen undersöker de ”smarta” elnätens roll för bättre tillhandahållande av energitjänster. Avhandlingen behandlar integration av förnybar energiteknik för minskad klimatpåverkan samt demonstrerar ett tillvägagångssätt för att förena potentiellt motstridiga energi-, vatten- och markanvändningsstrategier. Dessa uppvisar särskilda utmaningar i energisystemanalyser. Datorstödda modeller kan användas för att identifiera energisystem som på effektivast sätt möter samhällets krav. Datorstödda modeller är, per definition, förenklingar av verkligheten och det är därför viktigt att säkerställa en korrekt representation av det verkliga systemets dynamik. Den här avhandlingen förstärker energisystemmodeller för långsiktsprognoser utifrån tre aspekter: förbättra integrationen av (A) tillgång och efterfrågan genom smarta elnät; (B) olika tidsaspekter genom att inkludera kortsiktiga operativa begränsningar; samt (C) resurssystem genom att sammanlänka olika modelleringsverktyg. I del A utforskades de smarta elnätens potential för att förbättra elektriska system i utvecklingsländer. En befintlig energisystemmodell förstärktes för att behandla smarta elnät och kan därmed fånga fördelarna förknippade med energilagring och energianvändning. I del B utvidgades en energisystemmodell för långsiktsprognoser med flexibilitet för kortsiktiga operativa begränsningar. En fallstudie fokuserad på ett vindkraftsdominerat irländskt elnät genomfördes för att demonstrera fördelarna av modellutvecklingen. I del C kalibrerades en energisystemmodell för att ta klimatscenarier i beaktande samt energisystemets kopplingar till markanvändning och vattenresurssystem. En fallstudie fokuserad på Mauritius energisystem genomfördes för att undersöka konsekvenserna av en potentiell introducering av biobränslen. Avhandlingen demonstrerar att undermålig integration av energimodeller och resurssystem kan leda till avsevärda avvikelser i resultaten. Slutsatser som dras utifrån dessa resultat kan därmed leda till vitt skilda – och potentiellt felaktiga – underlag för investeringar och energipolitiska rekommendationer. / <p>QC 20131118</p>
|
9 |
[en] OPERATING RESERVE ASSESSMENT IN MULTI-AREA SYSTEMS WITH RENEWABLE SOURCES VIA CROSS ENTROPY METHOD / [pt] PLANEJAMENTO DA RESERVA OPERATIVA EM SISTEMAS MULTIÁREA COM FONTES RENOVÁVEIS VIA MÉTODO DA ENTROPIA CRUZADAJOSÉ FILHO DA COSTA CASTRO 11 January 2019 (has links)
[pt] A reserva girante é a parcela da reserva operativa provida por geradores sincronizados, e interligados à rede de transmissão, aptos a suprir a demanda na ocorrência de falhas de unidades de geração, erros na previsão da demanda, variações de capacidade de fontes renováveis ou qualquer outro fator inesperado. Dada sua característica estocástica, essa parcela da reserva operativa é mais adequadamente avaliada por meio de métodos capazes de representar as incertezas inerentes ao seu dimensionamento e planejamento. Por meio do risco de corte de carga é possível comparar e classificar distintas configurações do sistema elétrico, garantindo a não violação dos requisitos de confiabilidade. Sistemas com elevada penetração de fontes renováveis apresentam comportamento mais complexo devido ao aumento das incertezas envolvidas, à forte dependência de fatores energético-climáticos e às variações de capacidade destas fontes. Para avaliar as correlações temporais e representar a cronologia de ocorrência dos eventos no curto-prazo, um estimador baseado na Simulação Monte Carlo Quase Sequencial é apresentado. Nos estudos de planejamento da operação de curto-prazo o horizonte em análise é de minutos a algumas horas. Nestes casos, a ocorrência de falhas em equipamentos pode apresentar baixa probabilidade e contingências que causam corte de carga podem ser raras. Considerando a raridade destes eventos, as avaliações de risco são baseadas em técnicas de amostragem por importância. Os parâmetros de simulação são obtidos por um processo numérico adaptativo de otimização estocástica, utilizando os conceitos de Entropia Cruzada. Este trabalho apresenta uma metodologia de avaliação dos montantes de reserva girante em sistemas com participação de fontes renováveis, em uma abordagem multiárea. O risco de perda de carga é estimado considerando falhas nos sistemas de geração e transmissão, observando as restrições de transporte e os limites de intercâmbio de potência entre as diversas áreas elétricas. / [en] The spinning reserve is the portion of the operational reserve provided by synchronized generators and connected to the transmission network, capable of supplying the demand considering generating unit failures, errors in load forecasting, capacity intermittency of renewable sources or any other unexpected factor. Given its stochastic characteristic, this portion of the operating reserve is more adequately evaluated through methods capable of modeling the uncertainties inherent in its design and planning. Based on the loss of load risk, it is possible to compare different configurations of the electrical system, ensuring the non-violation of reliability requirements. Systems with high penetration of renewable sources present a more complex behavior due to the number of uncertainties involved, strong dependence of energy-climatic factors and variations in the capacity of these sources. In order to evaluate the temporal correlations and to represent the chronology of occurrence of events in the short term, an estimator based on quasi-sequential Monte Carlo simulation is presented. In short-term operation planning studies, the horizon under analysis is from minutes to a few hours. In these cases, the occurrence of equipment failures may present low probability and contingencies that cause load shedding may be rare. Considering the rarity of these events, risk assessments are based on importance sampling techniques. The simulation parameters are obtained by an adaptive numerical process of stochastic optimization, using the concept of Cross Entropy. This thesis presents a methodology for evaluating the amounts of spinning reserve in systems with high penetration of renewable sources, in a multi-area approach. The risk of loss of load is estimated considering failures in the generation and transmission systems, observing the network restrictions and the power exchange limits between the different electric areas.
|
Page generated in 0.035 seconds