• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 29
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 118
  • 31
  • 26
  • 23
  • 20
  • 18
  • 17
  • 16
  • 16
  • 13
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

FOCUSED ION BEAM FABRICATION OF PHOTONIC STRUCTURES FOR OPTICAL COMMUNICATIONS

CHENG, JI 27 September 2002 (has links)
No description available.
32

IMAGING SENSORS WITH DATA COMMUNICATIONS CAPABILITIES

FEARING, CHRISTOPHER JAMES 03 April 2006 (has links)
No description available.
33

Optical Communication Systems for Smart Dust

Song, Yunbin 23 August 2002 (has links)
In this thesis, the optical communication systems for millimeter-scale sensing and communication devises known as "Smart Dust" are described and analyzed. A smart dust element is a self-contained sensing and communication system that can be combined into roughly a cubic-millimeter mote to perform integrated, massively distributed sensor networks. The suitable passive optical and fiber-optic communication systems will be selected for the further performance design and analysis based on the requirements for implementing these systems. Based on the communication link designs of the free-space passive optical and fiber-optic communication systems, the simulations for link performance will be performed. / Master of Science
34

Underwater Wireless Optical Communications Systems: from System-Level Demonstrations to Channel Modeling

Oubei, Hassan M. 06 1900 (has links)
Approximately, two-thirds of earth's surface is covered by water. There is a growing interest from the military and commercial communities in having, an efficient, secure and high bandwidth underwater wireless communication (UWC) system for tactical underwater applications such as oceanography studies and offshore oil exploration. The existing acoustic and radio frequency (RF) technologies are severely limited in bandwidth because of the strong frequency dependent attenuation of sound in seawater and the high conductivity of seawater at radio frequencies, respectively. Recently, underwater wireless optical communication (UWOC) has been proposed as the best alternative or complementary solution to meet this challenge. Taking advantage of the low absorption window of seawater in blue-green (400-550 nm) regime of the electromagnetic spectrum, UWOC is expected to establish secure, efficient and high data rate communication links over short and moderate distances (< 100 m) for versatile applications such as underwater oil pipe inspection, remotely operated vehicle (ROV) and sensor networks. UWOC uses the latest gallium nitrite (GaN) visible light-emitting diode (LED) and laser diode (LD) transmitters. Although some research on LED lased UWOC is being conducted, both the military and academic 5 research communities are favoring the use of laser beams, which potentially could enhance the available bandwidth by up to three orders of magnitude. However, the underwater wireless channel is optically very challenging and difficult to predict. The propagation of laser beams in seawater is significantly affected by the harsh marine environments and suffers from severe attenuation which is a combined effect of absorption and scattering, optical turbulence, and multipath effects at high transmission rates. These limitations distort the intensity and phase structure of the optical beam leading to a decrease in signal-to-noise ratio (SNR) which ultimately degrades the performance of UWOC links by increasing the probability of error. In this dissertation, we seek to experimentally demonstrate the feasibility of short range (≤ 20 m) UWOC systems over various underwater channel water types using different modulation schemes as well as to model and describe the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.
35

Characterization and Advanced Communication Techniques for Free-Space Optical Channels

Anguita, Jaime A January 2007 (has links)
Free-Space Optical (FSO) communication through the terrestrial atmospheric channel offers many benefits in the wireless communications arena, like power efficiency; suitability for secure communications; absence of electromagnetic interference; and potentially very high bandwidth. An optical beam propagating through the atmosphere is subject to optical turbulence. Optical turbulence is a random process that distorts the intensity and phase structure of a propagating optical beam and induces a varying signal at the receiver of an FSO communication link. This phenomenon (usually referred to as scintillation) degrades the performance of the FSO link by increasing the probability of error. In this dissertation we seek to characterize the effects of the scintillation-induced power fluctuations by determining the channel capacity of the optical link using numerical methods. We find that capacity decreases monotonically with increasing turbulence strength in weak turbulence conditions, but it is non-monotonic in strong turbulence conditions. We show that low-density parity-check (LDPC) codes provide strong error control capabilities in this channel if a perfect interleaver is used. Multiple transmit optical beams can be used to reduce scintillation. We characterize the spatial correlation of the atmospheric optical channel and determine a scintillation model for the multiple-beam scheme. With this model we can predict the effective reduction in scintillation as a function of the system design parameters. A Multi-channel FSO communications system based on orbital angular momentum (OAM)-carrying beams is studied. We analyze the effects of turbulence on the system and find that turbulence induces attenuation and crosstalk among OAM channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied, and determine the aggregate capacity of the multi-channel system at those conditions. At very high data rates the FSO channel shows inter-symbol interference (ISI). We address the problem of joint sequence detection in ISI channels and decoding of LDPC codes. We derive the belief propagation equations that allow the simultaneous detection and decoding of a LDPC codeword in a ISI channel.
36

CorreÃÃo de erro em sistemas de comunicaÃÃo quÃntica utilizando polarizaÃÃo de estados coerentes e fÃtons isolados / Error correction in quantum communication system using polarization of coherent states and single-photons

Josà ClÃudio do Nascimento 14 September 2006 (has links)
Nesta dissertaÃÃo à realizado um estudo da polarizaÃÃo da luz e suas aplicaÃÃes em sistemas de comunicaÃÃes quÃnticas. Inicialmente, sÃo apresentadas as ferramentas matemÃticas necessÃrias ao tratamento da polarizaÃÃo da luz de fÃtons isolados e estados coerentes: matriz coerÃncia, parÃmetro de Stokes e grau de polarizaÃÃo. Em seguida à apresentada, atravÃs de simulaÃÃo numÃrica, a dinÃmica do grau de polarizaÃÃo da luz de um fÃton durante a propagaÃÃo em um canal despolarizador. Por fim, o resultado de um experimento usando estados coerentes, objetivando medir o grau de polarizaÃÃo da luz apÃs propagaÃÃo em um trecho de 200 m de fibra, à apresentado. O experimento à Ãtil para a determinaÃÃo do parÃmetro do modelo de canal despolarizador de qubits. Sendo a polarizaÃÃo da luz uma propriedade facilmente alterada por condiÃÃes ambientais, sÃo estudados os esquemas Ãpticos que, dentro de certas restriÃÃes, podem corrigir variaÃÃes aleatÃrias da polarizaÃÃo da luz durante a propagaÃÃo na fibra. Tais esquemas sÃo empregados como corretores de erros em sistemas de comunicaÃÃes quÃnticas. Baseados em esquemas de correÃÃo encontrados na literatura, foram propostos dois novos esquemas, um para a utilizaÃÃo em sistemas que empregam polarizaÃÃo de luz de fÃtons isolados e outro para sistemas que empregam polarizaÃÃo de estados coerentes bimodais, sendo o primeiro ativo, isto Ã, requer um protocolo de controle e sincronismo, e o segundo passivo. Por fim, à feita a anÃlise da seguranÃa de um sistema de distribuiÃÃo quÃntica de chaves, empregando o esquema proposto de correÃÃo de erros, quando o mesmo sofre o ataque de Fuchs-Peres-Brandt. à mostrado que a utilizaÃÃo do esquema de correÃÃo de erros proposto favorece a visibilidade da presenÃa de um espiÃo monitorando o canal quÃntico. / In this dissertation, it is realized a study of light polarization and its applications in quantum communications. Initially, the mathematical tools needed for single-photon and coherent states polarization analyses are presented: coherence matrix, Stokes parameters and polarization degree. Following, using numerical simulations, it is presented the variation of the degree of polarization of a single-photon pulse during depolarizing channel propagation. At last, the result of an experiment using coherent states, aiming to measure the degree of polarization after propagation in 200 m optical fiber is presented. The experiment is useful for determination of the parameter of the qubit depolarizing channel model. Since light polarization is easily changed when environment fluctuations are present during fiber propagation, optical schemes able to correct unpredictable polarization changes are studied. Such schemes are employed for error correction in quantum communication systems. Based on already proposed error correction schemes, two new schemes are proposed, one for systems that employs polarization of singlephoton light, and other for systems that employs polarization of two-mode coherent states, being the first active, that is, requiring a control and synchronism protocol, while the second is passive. At last, it is realized a security analysis of a quantum key distribution system, employing the proposed error correction scheme, when the same is under Fuch-Peres-Brandt attack. It is shown that using the proposed error correction scheme the presence of an eavesdropper monitoring the quantum channel is more visible.
37

AnÃlise e resultados experimentais de sistemas de distribuiÃÃo quÃntica de chaves usando fÃtons isolados e estados coerentes mesoscÃpicos / Theoretical analysis and experimental results of quantum key distribution systems using single-photons and mesoscopic coherent states.

FÃbio Alencar MendonÃa 21 September 2006 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / Nesta dissertaÃÃo à realizado um estudo sobre implementaÃÃes de distribuiÃÃo quÃntica de chaves (DQC) em redes Ãpticas. Inicialmente, à feita uma revisÃo da teoria da distribuiÃÃo quÃntica de chaves com fÃtons isolados e de algumas implementaÃÃes com estados coerentes fortemente atenuados, bem como a revisÃo de um sistema Ãptico para encriptaÃÃo fÃsica de mensagens utilizando estados coerentes mesoscÃpicos. Em seguida, à analisada a utilizaÃÃo de um sistema de correÃÃo de erros para o sistema de encriptaÃÃo fÃsica usando estados coerentes mesoscÃpicos, e sÃo propostos dois novos esquemas de distribuiÃÃo quÃntica de chaves. O primeiro à a possÃvel implementaÃÃo de um sistema hÃbrido, isto Ã, utilizando estados coerentes fortemente atenuados e estados coerentes mesoscÃpicos, para DQC e autenticaÃÃo quÃntica de mensagens clÃssicas. O segundo à uma implementaÃÃo de um sistema de DQC baseado em modulaÃÃo de fase relativa entre bandas laterais de freqÃÃncia, utilizando duas portadoras de RF e moduladores de amplitude em Alice e fase em Bob. Posteriormente, à detalhada a realizaÃÃo experimental de um sistema de DQC, simples e didÃtica, usando estados de polarizaÃÃo de pulsos coerentes fortemente atenuados que executa o protocolo B92. Por fim, à feita a caracterizaÃÃo teÃrica e experimental de um receptor Ãptico para uso em comunicaÃÃes Ãpticas. / In this dissertation it is realized a study about quantum key distribution (QKD) in optical networks. Initially, a review of the theory of quantum key distribution and some of its implementations with strongly attenuated coherent states, as well a review of an optical system for physical encryptation using mesoscopic coherent states are realized. Following, it is analyzed the use of an error correction scheme in the physical encryptation system, and two new schemes for quantum key distribution are proposed. The first is a possible implementation of a hybrid system, that is, using weak and mesoscopic coherent states, for QKD and quantum authentication of classical messages. The second is an implementation of a QKD system based on relative phase modulation of sidebands frequency, using two RF carriers and an amplitude modulator in Alice and a phase modulator in Bob. After, an experimental realization of a simple QKD setup using polarization states of strongly attenuated coherent states for B92 protocol is presented. At last, it is realized an experimental characterization of an optical receiver for optical communication applications.
38

A Novel Normal-To-Plane Space Efficient Micro Corner Cube Retroreflector With Improved Fill Factor

Agarwal, Rahul 07 November 2003 (has links)
A Corner Cube Retro-reflector (CCR) is a device that can be used as transmitters in wireless free space optical communication systems, or remote sensing instruments. A novel approach to fabricate the CCR is developed, where almost 100% of the planar chip area acts as the CCR compared to the maximum of 33% in the prior MEMS CCRs. Unlike the conventional micro machined CCRs that have two planes (mirrors of the CCR) normal to the surface of the wafer, our approach yields all the mirrors within the bulk of the wafer, ensuring very high packing densities and wide acceptance angles. The crystallography of single crystal silicon wafer along with different micromachining and wafer bonding techniques are used to fabricate and assemble the CCR. The solid models of both the active and passive CCRs were built using Coventorware simulation software. In the active CCRs, one of the mirror was electrostatically actuated; this is simulated using the software. The results which show a three fold decrease in the pull-in voltage as compared to surface micromachined cantilevers with the same dimensions as presented. Fabrication of the passive CCR along with various fabrication and assembling processes used are discussed. Experimental results are presented and then discussed.
39

Optical Orbital Angular Momentum for Secure and Power Efficient Point-to-Point FSO Communications

Alfowzan, Mohammed, Khatami, Mehrdad, Vasic, Bane 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / We address the problem of detection in orbital angular momentum (OAM). The focus of our analysis will be on the power efficient Q-ary Pulse Position Modulation (Q - PPM). Free space optical signals sent through wireless channels are degraded by atmospheric turbulence. In this paper a novel detection approach based on a factor graph representation of OAM Q-PPM signalling is presented to equalize for the crosstalk among orbital angular momentum vortices. It will be shown that our proposed detection algorithm significantly outperforms the separate detection scenario in terms of error rate performance.
40

EXPERIMENTAL DEMONSTRATION OF MITIGATION OF LINEAR AND NONLINEAR IMPAIRMENTS IN FIBER-OPTIC COMMUNICATION SYSTEMS BY LDPC-CODED TURBO EQUALIZATION

Minkov, Lyubomir L. January 2009 (has links)
The ever-increasing demands for transmission capacity are the cause for the quick evolution of optical communication systems. Channel transmission at 100 Gb/s is already being considered by network operators. The major transmission impairments at these high rates are intra-channel and inter-channel nonlinearities, nonlinear phase noise, and polarization mode dispersion. By implementing LDPC-coded modulation schemes with soft decoding and Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm for equalization we have demonstrated significant improvements in system performance experiencing several impairments simultaneously. The new turbo-equalization scheme is used as a mean to simultaneously mitigate both linear and nonlinear impairments. This approach is general and applicable to both direct and coherent detection.We provide comprehensive study of LDPC codes suitable for implementation in high-speed optical transmission systems. We determine channel capacity based on the forward step of the BCJR algorithm and show that by using LDPC codes we can closely approach the maximum transmission capacity that is possible. We propose the multilevel maximum a posteriori probability (MAP) turbo equalization scheme based on multilevel BCJR algorithm and an LDPC decoder, which considers independent symbols transmitted over both polarizations as two dimensional super-symbols. The use of multilevel modulation schemes provide higher spectral efficiency, while all related signal processing is performed at lower symbol rates, where dealing with PMD compensation and fiber nonlinearities mitigation is more manageable. We show significant improvement in system performance over a system employing an equalizer that considers symbols transmitted in different polarizations as independent.

Page generated in 0.1243 seconds