• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 29
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 118
  • 31
  • 26
  • 23
  • 20
  • 18
  • 17
  • 16
  • 16
  • 13
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Experimental Study on the Effects of OAM Beams Propagating through Atmospheric Turbulence

Wu, HaoLun 07 August 2023 (has links)
No description available.
52

Performance Analysis of Free Space Optical Link with Pointing Errors

‍Jung, Kug-Jin 12 1900 (has links)
Free-space optical communication (FSO) has been proposed as an attractive alternative to radio frequency communication in the sense that it provides wide bandwidth and high capacity without requirement of license. However, the scalability of FSO link is limited by pointing error, atmospheric turbulence, and loss. Especially, when it comes to the FSO link between moving platforms, it is imperative works to analyze the statistical channel model considering accurate pointing errors and atmospheric turbulence at the same time. In this paper, we analyze performance of FSO links over various atmospheric situations with pointing errors. First, we assume strong turbulence and obtain a unified approximation of the composite probability density function (PDF) of channel gain, which embraces generalized pointing error models. This approximation leads to new unified formulas for the bit error rate (BER) and outage capacity of a FSO link, which account for the two possible detection mechanisms of intensity modulation/direct detection (IM/DD) and heterodyne detection. Secondly, we statistically derive the unified composite PDF containing all possible pointing error models based on weak turbulence model. In addition, we analyze BER performance in FSO communication with IM/DD and heterodyne detection technology based on the derived unified composite PDF results. Finally, we investigate the ergodic capacity of unmanned aerial vehicle (UAV)-based FSO links over random foggy channel. More specifically, we derive composite PDF and close approximation for the moments of the composite PDF using the statistical model of a UAV-based 3D pointing error and a random foggy channel. With it, we obtain upper bound and asymptotic approximation of the ergodic capacity for the two possible detection techniques of IM/DD and heterodyne detection at high and low signal-to-noise ratio (SNR) regimes.
53

Interferometry-based Free Space Communication And Information Processing

Arain, Muzamil Arshad 01 January 2005 (has links)
This dissertation studies, analyzes, and experimentally demonstrates the innovative use of interference phenomenon in the field of opto-electronic information processing and optical communications. A number of optical systems using interferometric techniques both in the optical and the electronic domains has been demonstrated in the filed of signal transmission and processing, optical metrology, defense, and physical sensors. Specifically it has been shown that the interference of waves in the form of holography can be exploited to realize a novel optical scanner called Code Multiplexed Optical Scanner (C-MOS). The C-MOS features large aperture, wide scan angles, 3-D beam control, no moving parts, and high beam scanning resolution. A C-MOS based free space optical transceiver for bi-directional communication has also been experimentally demonstrated. For high speed, large bandwidth, and high frequency operation, an optically implemented reconfigurable RF transversal filter design is presented that implements wide range of filtering algorithms. A number of techniques using heterodyne interferometry via acousto-optic device for optical path length measurements have been described. Finally, a whole new class of interferometric sensors for optical metrology and sensing applications is presented. A non-traditional interferometric output signal processing scheme has been developed. Applications include, for example, temperature sensors for harsh environments for a wide temperature range from room temperature to 1000 degree C.
54

All-semiconductor High Power Mode-locked Laser System

Kim, Kyungbum 01 January 2006 (has links)
All-optical synchronization and its application in advanced optical communications have been investigated in this dissertation. Dynamics of all-optical timing synchronization (clock recovery) using multi-section gain-coupled distributed-feedback (MS-GC DFB) lasers are discussed. A record speed of 180-GHz timing synchronization has been demonstrated using this device. An all-optical carrier synchronization (phase and polarization recovery) scheme from PSK (phase shift keying) data is proposed and demonstrated for the first time. As an application of all-optical synchronization, the characterization of advanced modulation formats using a linear optical sampling technique was studied. The full characterization of 10-Gb/s RZ-BPSK (return-to-zero binary PSK) data has been demonstrated. Fast lockup and walk-off of the all-optical timing synchronization process on the order of nanoseconds were measured in both simulation and experiment. Phase stability of the recovered clock from a pseudo-random bit sequence signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5 % clock phase stability for large variations in power, bit rate and optical carrier frequency of the input data and therefore is suitable for applications in ultrafast optical packet switching. All-optical timing synchronization of 180-Gb/s data streams has been demonstrated using a MS-GC DFB laser. The recovered clock has a jitter of less than 410 fs over a dynamic range of 7 dB. All-optical carrier synchronization from phase modulated data utilizes a phase sensitive oscillator (PSO), which used a phase sensitive amplifier (PSA) as a gain block. Furthermore, all-optical carrier synchronization from 10-Gb/s BPSK data was demonstrated in experiment. The PSA is configured as a nonlinear optical loop mirror (NOLM). A discrete linear system analysis was carried out to understand the stability of the PSO. Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the sampling pulses be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have a negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of the sampling source. Characterization of the 10-Gb/s RZ-BPSK signal was demonstrated using the coherent detection technique. Measurements of the optical intensity profile, chirp and constellation diagram were demonstrated. A CW local oscillator was used and electrical sampling was performed using a sampling scope. A novel feedback scheme was used to stabilize homodyne detection.
55

Nonlinear Equalization Based on Decision Feedback Equalizer for Optical Communication System

Xiaoqi, Han 09 December 2013 (has links)
No description available.
56

ELECTRICAL EQUALIZATION FOR MULTIMODE FIBER SYSTEMS

Liu, Yizhou 11 January 2017 (has links)
No description available.
57

RATE-ADAPTIVE TECHNIQUES FOR FREE-SPACE OPTICAL CHANNELS

Liu, Linyan 10 1900 (has links)
<p>Free-space optical (FSO) communication has witnessed rapid development recently in response to ever-increasing demands for greater bandwidth. FSO links provide fiberspeed with the flexibility of wireless. Commercially available systems offer transmission speeds up to 2.5 Gbps, 5 Gbps and 10 Gbps, and demonstration systems report data rates as high as 160 Gbps. Its advantages also include license free operation, high immunity to interference, and ease of deployment. However, FSO systems are sensitive to adverse weather conditions such as fog, rain and snow.</p> <p>In order to improve the availability of FSO channels degraded by atmospheric turbulence and varying weather conditions, the effects of channel gain variations must be compensated. In this thesis, two rate-adaptive techniques, punctured low-density parity-check (LDPC) codes and Raptor codes, are studied using experimental data measured over a1.87 km terrestrial FSO link.</p> <p>Rate-adaptive performances with punctured LDPC codes and Raptor codes are evaluated in terms of outage probability and throughput. In comparison to uncoded system, rate-adaptive systems with both techniques demonstrate significant improvement of throughput and mitigation of outage probability especially in rainy weather. Due to its flexible rate-adaptation and simple hardware implementation, Raptor coded systems are judged more applicable to be implemented in field-programmable gate array (FPGA) based hardware. A dedicated decoding structure is proposed and tested, showing remarkable improvement in resource efficiency as compared to traditional Gauss-Jordan (GJ) decoding structures.</p> / Master of Applied Science (MASc)
58

Investigation of High-Nonlinearity Glass Fibers for Potential Applications in Ultrafast Nonlinear Fiber Devices

Kim, Jong-Kook 23 August 2005 (has links)
Nonlinear fiber devices have been attracting considerable attention in recent years, due to their inherent ultrafast response time and potential applications in optical communication systems. They usually require long fibers to generate sufficient nonlinear phase shifts, since nonlinearities of conventional silica-core silica-clad fibers are too low. These long devices, however, cause the serious problems of pulse walk-off, pulse broadening, and polarization fluctuation which are major limiting factors for response time, switching bandwidth, and maximum transmittable bit-rate. Therefore, short device length is indispensable for achieving ultrafast switching and higher bit-rate data transmission. To shorten the required device length, fiber nonlinearities should be increased. In this dissertation, as a way of increasing fiber nonlinearities, high-nonlinearity materials of Litharge, Bismite, Tellurite, and Chalcogenide glasses have been considered. Although they have high nonlinearities, they also have high group-velocity dispersion and high losses deteriorating the performance of nonlinear fiber devices seriously. The aim of this work is to investigate how these high-nonlinearity glasses affect the performance of nonlinear fiber devices, taking into consideration both the advantages and disadvantages. To achieve it, the critical properties of various nonlinear fiber devices constructed with the different types of high-nonlinearity glasses and different types of fibers have been evaluated. It turned out that the required device lengths of nonlinear fiber devices constructed with the high-nonlinearity glasses were significantly reduced and high group-velocity dispersions and losses could not be major problems due to the extremely short device length. As a result, it would be possible to suppress the problems of pulse walk-off, pulse broadening, and polarization fluctuation in nonlinear fiber devices by introducing high-nonlinearity glasses, thus enabling ultrafast switching and higher bit-rate data transmission. Furthermore, in this dissertation, a new scheme of wavelength-division demultiplexing based on the optical Kerr effect has been proposed for the first time. The new scheme can turn the disadvantage of the extremely high group-velocity dispersion of high-nonlinearity glasses into an advantage of wavelength-division demultiplexing. Finally, it now would be possible to greatly increase maximum transmittable bit-rate in optical communication systems by simultaneously demultiplexing optical time-division-multiplexed signals and wavelength-division-multiplexed signals with an optical Kerr effect-based demultiplexer. / Ph. D.
59

Importance sampling simulation of free-space optical APD pulse position modulation receivers

Baker, Kenneth R. 06 June 2008 (has links)
Free-space optical communication technology has many advantages over RF/microwave in satellite and other spacecraft applications where reductions in size, weight and prime power requirements are combined with increased data transfer capability over long distances. Ultimately, the design and implementation of free-space optical communication systems is dependent on suitable analysis of the link. The analysis of these systems is difficult due to the complicated time-varying propagation of optical energy over the free-space channel. This difficulty is combined with a shortage of suitable analytical expressions for adequately determining the performance of free-space optical receivers. As the link must be modeled and analyzed, simulation of the free-space optical communication link can initiate the process of exploring the application of lightwave technology to the free-space channel. A prohibitive amount of time is required to simulate receiver bit error rate (BER) performance at the low error rates of interest. This dissertation presents the results achieved in reducing the amount of time required to simulate, to a given accuracy, the bit error rate performance of an APD based free-space optical receiver. An improved technique for the importance sampling simulation of direct detection APD receivers has been developed. Two methods for efficiently simulating and biasing the probability distribution function of the APD process are presented and discussed. This is the first use the Webb, McIntyre, Conradi statistics in importance sampling simulation of an APD. The general procedure for applying importance sampling to the optical communication system simulation problem is presented in detail. The technique of importance sampling has been extended to include the simulation of maximum likelihood optical M-ary PPM receivers, an optical receiver relevant to free-space applications. The use of importance sampling is shown to reduce the time required to simulate M-PPM APD receivers by several orders of magnitude, from 9000 years to less than one hour in one example. / Ph. D.
60

CMOS Receiver Design for Optical Communications over the Data-Rate of 20 Gb/s

Chong, Joseph 21 June 2018 (has links)
Circuits to extend operation data-rate of a optical receiver is investigated in the dissertation. A new input-stage topology for a transimpedance amplifier (TIA) is designed to achieve 50% higher data-rate is presented, and a new architecture for clock recovery is proposed for 50% higher clock rate. The TIA is based on a gm-boosted common-gate amplifier. The input-resistance is reduced by modifying a transistor at input stage to be diode-connected, and therefore lowers R-C time constant at the input and yielding higher input pole frequency. It also allows removal of input inductor, which reduces design complexity. The proposed circuit was designed and fabricated in 32 nm CMOS SOI technology. Compared to TIAs which mostly operates at 50 GHz bandwidth or lower, the presented TIA stage achieves bandwidth of 74 GHz and gain of 37 dBohms while dissipating 16.5 mW under 1.5V supply voltage. For the clock recovery circuit, a phase-locked loop is designed consisting of a frequency doubling mechanism, a mixer-based phase detector and a 40 GHz voltage-controlled oscillator. The proposed frequency doubling mechanism is an all-analog architecture instead of the conventional digital XOR gate approach. This approach realizes clock-rate of 40 GHz, which is at least 50% higher than other circuits with mixer-based phase detector. Implemented with 0.13-μm CMOS technology, the clock recovery circuit presents peak-to-peak clock jitter of 2.38 ps while consuming 112 mW from a 1.8 V supply. / Ph. D.

Page generated in 0.0711 seconds