• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • 5
  • 4
  • 1
  • Tagged with
  • 41
  • 41
  • 11
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Infrared microspectroscopy of plants: use of synchrotron radiation infrared microspectroscopy to study plant root anatomy and to monitor the fate of organic contaminants in those roots

Dokken, Kenneth M. January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Lawrence C. Davis / The fate and bioavailability of organic contaminants in plants is a major ecological and human health concern. Current wet chemistry techniques that employ strong chemical treatments and extractions with volatile solvents, such as GC-MS, HPLC, and radiolabeling, although helpful, degrade plant tissue resulting in the loss of spatial distribution and the production of artifacts. Synchrotron radiation infrared microspectroscopy (SR-IMS) permits direct analysis of plant cell wall architecture at the cellular level in situ, combining spatially localized information and chemical information from the IR absorbances to produce a chemical map that can be linked to a particular morphology or functional group. This study demonstrated the use of SR-IMS to probe biopolymers such as cellulose, lignin, and proteins in the root tissue of hydroponically grown sunflower and maize plants as well as to determine the fate and effect of several organic contaminants in those root tissues. Principal components analysis (PCA), a data compression technique, was employed to reveal the major spectral variances between untreated and organic contaminant treated root tissues. Treatment with 1H-benzotriazole (BT) caused alterations to the lignin component in the root tissue of plants. The BT was found in xylem and epidermal tissue of sunflower plants but not associated with any particular tissue in maize roots. 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) altered the pectin and polysaccharide structure in both maize and sunflower. SR-IMS revealed the reduction of DNTs to their aromatic amine form in the vascular and epidermal tissues at low concentration. At high concentration, DNTs appeared to be associated with all the plant tissues in maize and sunflower. Exposure of sunflower and maize to 2,6-dichlorophenol (2,6-DCP) caused alterations to the polysaccharide and protein component of the root tissue. In some cases, phenolic compounds were observed in the epidermal tissue of maize and sunflower roots. The results of this research indicate that SR-IMS has the potential to become an important analytical tool for determining the fate and effect of organic contaminants in plants.
22

Selection and prioritization of organic contaminants for monitoring in the drinking water value chain

Ncube, Esper Jacobeth 09 October 2010 (has links)
The occurrence of organic contaminants in the drinking water value chain (from source to tap) is a growing concern for the Drinking Water industry and its consumers given the high risk these contaminants can cause to the general public. These adverse health effects include such as endocrine disruption, toxicity teratogenicity, mutagenicity and carcinogenicity. Some of these organic contaminants are included in national and international drinking water quality guidelines or standards. However, although there are similarities in the list of organic contaminants used by each organization or country, the organic contaminants are never the same given the local conditions. There are also noticeable differences in the concentration limits set as targets or criteria for organic contaminants for public health protection via the use of drinking water. A further question requiring the response from drinking water regulators was whether the standards listed in the international literature would be applicable in other countries like South Africa. Complicating this decision is the fact that the South African National Drinking Water Standard (SANS 241) does not adequately address this component of drinking water quality management. The current standard only provides for dissolved organic carbon (DOC), total trihalomethanes (TTHMs) and phenols. However, the standard contains a statement which specifies that if there is a known organic contaminant, that may pose a health threat, it should be included in the monitoring programme and evaluated against World Health Organization (WHO) guidelines. To safeguard Drinking Water industry customers, it was deemed necessary to investigate this matter and establish a tool to assist with the identification of a list of organic contaminants to be monitored in the drinking water value chain. To achieve this a specific procedure/protocol needed to be developed, hence the aim of this study which was to develop a generic protocol for the selection and prioritization of organic contaminants for monitoring in the drinking water value chain (from source to tap). To achieve this, a critical evaluation and synthesis of the available literature on the approaches for the selection and prioritization of organic variables of priority to the drinking water industry was undertaken as a first step. From the literature review it was evident that there are currently many selection and prioritization approaches which are characterized mainly by the purpose for which the exercise has been conducted for. Approaches that prioritize chemicals according to their importance as environmental contaminants have been developed by government agencies and private industries such as the Health Canada’s Canadian Environmental Protection Agency (CEPA), the United Kingdom’s Institute for Environmental Health (IEH), the European Community’s Oslo and Paris (OSPAR) convention exercise for the protection of the Northeast Atlantic marine environment and the European Union (EU)’s combined monitoring based and modelling based priority setting scheme (EU-COMMPs). A few approaches such as ones published by the United States Environmental Protection Agency (USEPA), address the needs of the Drinking Water industry and there is no generic approach to the selection, prioritization and monitoring of organic contaminants in the drinking water value chain. From the review of selection and prioritization approaches, a generic model was developed. The model consists of three main steps, the compilation of a “pool of organic contaminants, the selection of relevant parameters and criteria to screen organic contaminants and finally the application of criteria to select priority organic contaminants. It was however realized that these steps were not enough if the protocol to be develop will serve its purpose. Selection and prioritization approaches are typically intended to be fairly simple and quick methods for determining the health and environmental hazards posed by the use and release of chemical substances into different environmental systems. This was taken into account during the development of the current protocol. Understanding that a protocol is a predefined written procedural method in the design and implementation of tasks and that these protocols are written whenever it is desirable to standardize a method or procedure to ensure successful reproducibility in a similar set up, a generic protocol was developed based on the model. The protocol developed in this study, operates as a multidisciplinary contaminants management and proactive protocol, thus exchanges toxicological, water quality, agricultural, chemical and public health information. The protocol uses previous or readily available information as a point of departure. It seeks to address the challenge facing the water industry in managing the current and emerging organic contaminants that are relevant to public health protection via the use of drinking water. Once the protocol was developed, it was validated in a prototype drinking water value chain. The exercise comprised of testing each step of the protocol from the selection of the “pool of organic contaminants (Step I) to recommending the final priority list of organic contaminants (Step VII). The implementation was successfully conducted in the Rand Water drinking water value chain. Emphasis of expert judgment was made as each step was validated and the opinion of key stakeholders used to shape the process. During Step III of the protocol, an intensive literature review was conducted to determine organic contaminants that have been identified in ground and surface water systems across the world. As a result of this review, major groups of organic contaminants that have been found to occur in source water resources across the world were identified. The identified groups of organic contaminants include, pesticides, polynuclear aromatic hydrocarbons, per and polyfluoroorganic compounds, polycyclic aromatic hydrocarbons, alkanes and alkenes, C10-C13 Chloroalkanes, pharmaceuticals and personal care products [PPCPs], surfactants, benzotriazoles, cyanotoxins and Carbon-based engineered nanoparticles. The risk profile of the identified organic contaminants was established using the persistence, bio-accumulation and toxicity criteria and the development of water quality monographs as an information dissemination tool. A conceptual framework for the implementation of the protocol by water utilities and relevant institutions has been developed from the experiences learnt during the validation exercise and a priority list of organic contaminants for the monitoring in the drinking water value chain to be used by Rand Water and other water utilities was identified. Some of the organic contaminants on this are currently being analyzed for in The Rand Water’s routine organic monitoring programme. During the validation exercise, the following were noted, <ul> <li>During the identification of the “pool of organic contaminants” from the consulted information sources such as the WHO guidelines for drinking water quality, Health Canada drinking water quality guidelines, the USEPA drinking water quality standards, the New Zealand drinking water quality standards, USEPA IRIS database, the PAN-UK list of registered pesticides for South Africa, the IARC list for recognized carcinogens and the Department of Agriculture pesticides manuals duplications were observed. </li> <li>The time allocated could not allow for the development of water quality monographs for all organic contaminants of concern but for a few selected contaminants whose information was inadequate to allow for decision-making. </li> <li>The determination of concentration levels of organic contaminants in fish, sediment and water samples could have been limited by the failure of current analytical instruments to go down to lower levels at which they occur in the drinking water value chain. <l/i> <li>Only two events could be planned, during the wet season (high flow) and dry season (low flow) based on time and budget constraints. </li> <li>Although various experts were consulted and invited to attend workshops in order to validate the process, the attendance could not be extended to all nine provinces given the time and budget constraints. <br></li></ul> Based on the above, recommendations were made for the dissemination and use of the products emanating from this study. For example, it is recommended that the current protocol be made available to water utilities and the process of revising the current priority list be repeated every 5 years. Further research should be conducted to obtain full coverage of organic contaminants impacting on source water quality in all ground water and surface water systems used as sources for drinking water production. Another major recommendation is the investigation of potential analytical methods that current chromatographic methods with high resolution mass spectrometry to ensure that organic contaminants can be detected at the ng/l to pg/l using a single enrichment method in order to make sure that those organic contaminants that occur at very low concentration in environmental samples can be detected. For example, the realisation that compounds such as synthetic organic polymer residues, emerging disinfectant by-products, detergent metabolites, chlorinated benzenes, alkyl phenol, polyethoxylates, their metabolites and cyanotoxins are continuously discharged into the environment via wastewater and industrial effluent discharges which increases their concentration in aquatic environment and concomitantly their potential to exert adverse health effects in water used as source for the production of drinking water necessitates that each of these groups be added to the current monitoring programme. The current water quality monographs can be used for the benefit of the Drinking Water industry. It is also recommended that a training manual on the production and use of water quality monographs is produced to facilitate their dissemination. CD-ROMs on the water quality monographs can be produced and distributed with the manual. / Thesis (PhD)--University of Pretoria, 2010. / School of Health Systems and Public Health (SHSPH) / PhD / Unrestricted
23

Resilience of Micropollutant and Biological Effect Removal in an Aerated Horizontal Flow Treatment Wetland

Sossalla, Nadine A., Nivala, Jaime, Escher, Beate I., Reemtsma, Thorsten, Schlichting, Rita, van Afferden, Manfred, Müller, Roland A. 19 April 2023 (has links)
The performance of an aerated horizontal subsurface flow treatment wetland was investigated before, during and after a simulated aeration failure. Conventional wastewater parameters (e.g., carbonaceous biological oxygen demand, total nitrogen, and Escherichia coli) as well as selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) were investigated. Furthermore, the removal of biological effects was investigated using in vitro bioassays. The six bioassays selected covered environmentally relevant endpoints (indicative of activation of aryl hydrocarbon receptor, AhR; binding to the peroxisome proliferator-activated receptor gamma, PPARγ; activation of estrogen receptor alpha, ERα; activation of glucocorticoid receptor, GR; oxidative stress response, AREc32; combined algae test, CAT). During the aeration interruption phase, the water quality deteriorated to a degree comparable to that of a conventional (non-aerated) horizontal subsurface flow wetland. After the end of the aeration interruption, the analytical and biological parameters investigated recovered at different time periods until their initial treatment performance. Treatment efficacy for conventional parameters was recovered within a few days, but no complete recovery of treatment efficacy could be observed for bioassays AhR, AREc32 and CAT in the 21 days following re-start of the aeration system. Furthermore, the removal efficacy along the flow path for most of the chemicals and bioassays recovered as it was observed in the baseline phase. Only for the activation of AhR and AREc32 there was a shift of the internal treatment profile from 12.5% to 25% (AhR) and 50% (AREc32) of the fractional length.
24

The Impact of Membrane Fouling on the Removal of Trace Organic Contaminants from Wastewater by Nanofiltration

Vogel, Dirk 20 May 2019 (has links)
Nanofiltration (NF) is an attractive option for the treatment of wastewater e.g. municipal wastewater and landfill leachate. However, membrane fouling can be a major obstacle in the implementation of this technology. Fouling of nanofiltration membranes by hu-mic acids (HA) was investigated using bisphenol A (BPA) as an indicator chemical to dif-ferentiate between various mechanisms that may lead to a change in solute rejection. Three commercially available NF membranes were investigated and an accelerated foul-ing condition was achieved with a foulant mixture containing humic acids in an electro-lyte matrix. The effects of membrane fouling on the rejection of BPA were interpreted with respect to the membrane pore sizes and the fouling characteristics. Results report-ed here indicate that calcium concentration in the feed solution could be a major factor governing the humic acid fouling process. Moreover, a critical concentration of calcium in the feed solution was observed, at which membrane fouling was most severe. Mem-brane fouling characteristics were observed by their influence on BPA rejection. Such influence could result in either an increase or decrease in rejection of BPA by the three different membranes depending on the rejection mechanisms involved. It is hypothe-sised that these mechanisms could occur simultaneously and that the effects of each might not be easily distinguished. However, it was observed that their relative contribu-tion was largely dependent upon membrane pore size. Pore blocking, which resulted in a considerable improvement in rejection, was prominent for the more open pore size TFC-SR2 membrane. In contrast, the cake-enhanced concentration polarisation (CECP) effect was more severe for the tighter NF270 and NF90 membranes. For hydrophobic solutes such as BPA, the formation of the fouling layer could also interfere with the so-lute-membrane interaction, and therefore, exert considerable influence on the separa-tion process. The combined impact of humic acid fouling and CaCO3 scaling on the rejection of trace organic contaminants by a commercially available nanofiltration membrane was inves-tigated in this study. Due to the presence of humic acid in the feed solution, CaCO3 scal-ing behaviour differed substantially from that of a pure CaCO3 solution. A prolonged induction period was consistently observed prior to the onset of membrane scaling. In addition, membrane scaling following humic acid fouling did not result in a complete loss of permeate flux. This is consistent with the absence of any large CaCO3 crystals. In fact, the CaCO3 crystals on the membrane surface were quite small and similar in size, which would result in a relatively porous cake layer. At the onset of CaCO3 scaling the rejection of all three trace organic contaminants started to decrease dramatically. The observed decrease in rejection of the trace organic contaminants was much more se-vere than that reported previously with a single layer of either organic or colloidal foul-ing. Such severe decrease in rejection can be attributed to the extended cake-enhanced concentration polarisation effect occurring as a result of the combination of membrane fouling and scaling. The porous CaCO3 scaling layer could lead to a substantial cake-enhanced concentration polarisation effect. In addition, the top CaCO3 scaling layer could reduce the wall shear rate within the underlying humic acid fouling layer, causing an additional concentration polarisation (CP) effect.:1 INTRODUCTION 1 1.1 Fundamentals of NF/RO 1 1.1.1 Solute transport through NF/RO membranes 2 1.1.2 Separation mechanisms 3 1.1.2.1 Steric size exclusion 3 1.1.2.2 Donnan effect 3 1.1.2.3 Electrostatic repulsion 4 1.1.2.4 Adsorption 4 1.1.3 Environmental applications of NF/RO 5 1.1.4 Drinking water treatment from groundwater and surface water sources 5 1.1.5 Water/Wastewater reclamation 7 1.2 Classification and materials of NF/RO membranes 7 1.2.1 Membrane classes 7 1.2.2 Membrane materials 8 1.2.3 Organic membrane materials 9 1.2.3.1 Polyamide membranes 9 1.2.3.2 Cellulose acetate membranes 9 1.2.4 Inorganic membrane materials 10 1.3 Removal of trace organic contaminants 11 1.3.1 Impact of membrane characteristics 14 1.3.1.1 Molecular weight cut-off/pore size 14 1.3.1.2 Surface charge 14 1.3.1.3 Hydrophobicity/hydrophilicity 15 1.3.1.4 Surface morphology 15 1.3.2 Impact of feed characteristics 17 1.3.2.1 pH value 17 1.3.2.2 Ionic strength 18 1.3.2.3 Organic matter 19 1.3.2.4 Presence of divalent ions 20 1.3.2.5 Presence of foulants 20 1.3.2.6 Temperature 20 1.3.3 Impact of solute characteristics 22 1.3.3.1 Molecular weight 22 1.3.3.2 Molecular size (length and width)/molecular volume 22 1.3.3.3 Minimum projection area/Equivalent width 23 1.3.3.4 Charge 23 1.3.3.5 Hydrophobicity/hydrophilicity 24 1.3.4 Impact of operational characteristics 25 1.3.4.1 Transmembrane pressure/permeate or transmembrane flux 25 1.3.4.2 Cross-flow velocity/recovery/concentration polarisation 25 1.3.5 Impact of fouling on rejection 26 1.3.5.1 Organic fouling 28 1.3.5.2 Colloidal fouling 30 1.3.5.3 Inorganic fouling (scaling) 31 1.3.5.4 Biological fouling 32 1.3.6 Impact of membrane cleaning on rejection 32 1.3.6.1 Changes of membrane morphology due to cleaning 32 1.3.6.2 Impact on rejection of TrOCs due to cleaning 33 1.3.7 Validation at pilot and full scale systems 35 2 MEMBRANE FOULING IN THE NANOFILTRATION OF LANDFILL LEACHATE AND ITS IMPACT ON TRACE CONTAMINANT REMOVAL 37 2.1 Introduction 37 2.2 Materials and Methods 40 2.2.1 Analytical reagents and chemicals 40 2.2.2 Nanofiltration membrane 40 2.2.3 Membrane filtration set-up and protocol 41 2.2.4 Analytical technique 42 2.3 Results and discussion 42 2.3.1 Landfill leachate characterisation 42 2.3.2 Physico-chemical properties of bisphenol A 43 2.3.3 Influence of the calcium concentration on the flux 44 2.3.4 Influence of fouling on the rejection of organic contaminants 46 2.4 Conclusions 48 3 CHARACTERISING HUMIC ACID FOULING OF NANOFILTRATION MEMBRANES USING BISPHENOL A AS A MOLECULAR INDICATOR 50 3.1 Introduction 50 3.2 Materials and methods 52 3.2.1 Model NF membranes and membrane characterisation 52 3.2.2 Model trace organic contaminant 52 3.2.3 Organic foulant 53 3.2.4 Membrane filtration set-up 54 3.2.5 Filtration protocol 55 3.2.6 Analytical technique 56 3.3 Results and discussions 56 3.3.1 Membrane characteristics 56 3.3.2 Membrane fouling behaviour 58 3.3.3 Change of membrane hydrophobicity 61 3.3.4 Effects of organic fouling on the nanofiltration of BPA 63 3.3.5 Effects of organic fouling on rejection: the mechanisms 65 3.4 Conclusions 67 4 EFFECTS OF FOULING AND SCALING ON THE REJECTION OF TRACE ORGANIC CONTAMINANTS BY A NANOFILTRATION MEMBRANE: THE ROLE OF CAKE-ENHANCED CONCENTRATION POLARISATION 69 4.1 Introduction 69 4.2 Materials and methods 71 4.2.1 Nanofiltration membrane 71 4.2.2 Chemicals and reagents 71 4.2.3 Crossflow membrane filtration system 72 4.2.4 Experimental protocol 73 4.2.5 SEM-EDS analysis 74 4.2.6 Analytical methods 75 4.3 Results and discussion 75 4.3.1 Membrane characteristics 75 4.3.2 Membrane fouling and scaling development 76 4.3.3 Effects of fouling/scaling on the membrane rejection behaviour 79 4.3.4 Cake-enhanced concentration polarisation 85 4.4 Conclusions 87 5 SUMMARY AND CONCLUSIONS 88 6 REFERENCES 94 7 ACKNOWLEDGEMENTS 112
25

Heterogeneous photocatalytic degradation of organic pollutants in water over nanoscale powdered titanium dioxide : the photocatalytic degradation of organic compounds in water (Reactive Orange 16, Triclocarbon, Clopyralid and Estrogens (estrone, 17ß-estradiol, and 17α-ethinylestradiol)) was studied : the reaction kinetics and the effect of the operating parameters on the performance of the system were determined; a comparison with other advanced oxidation processes (O₃, H₂O₂, UV) was also made

Mezughi, Khaled M. January 2010 (has links)
Organic contaminants from industrial and/or domestic effluents may be harmful to humans directly or indirectly by degrading the quality of the aquatic environment. Consequently these contaminants must be reduced to levels that are not harmful to humans and the environment before disposal. Chemical, physical and biological methods exist for the removal of these pollutants from effluents. Among the available chemical methods, heterogeneous photocatalytic oxidation has been found particularly effective in removing a large number of persistent organics in water. In this study, photocatalytic degradation was explored for the removal of reactive azo-dye (textile dye), triclocarban (disinfectant), clopyralid (herbicide) and three endocrine disrupting compounds (EDCs) (estrone, 17ß-estradiol and 17α-ethinylestradiol) from synthetic effluents. The major factors affecting the photocatalytic processes including the initial concentration of the target compounds, the amount of catalyst, the light intensity, the type of catalyst, the electron acceptor, the irradiation time and the pH were studied. Other oxidation techniques including (O3, H2O2, UV) were also studied. Generally UV light is used in combination with titanium dioxide, as photocatalyst, to generate photoinduced charge separation leading to the creation of electron-hole pairs. The holes act as electron acceptors hence the oxidation of organics occur at these sites. These holes can also lead to the formation of hydroxyl radicals which are also effective oxidants capable of degrading the organics. The results obtained in this study indicated that photolysis (i.e. UV only) was found to have no effect on the degradation of reactive azo-dye (RO16). However, complete photocatalytic degradation of 20 mg/L (3.24×10-2 mM) RO16 was achieved in 20 minutes in the presence of 1g/L TiO2 Degussa P25 at pH 5.5. Comparison between various types of catalysts (i.e. Degussa P25, VP Aeroperl, Hombifine N) gave varied results but Degussa P25 was the most effective photocatalyst hence it was selected for this study. For RO16 the optimum catalyst concentration was 0.5 g/L TiO2 with initial concentration of 20 mg/L RO16. It was found that the disappearance of RO16 satisfactorily followed the pseudo first-order kinetics according to Langmuir-Hinshelwood (L-H) model. The rate constant was k= 0.0928 mol/min. Photodegradation of TCC was studied in 70%v acetonitrile: 30%v water solutions. UV light degraded TCC effectively and the reaction rates increased with decreasing initial concentration of TCC. UV/TiO2 gave unsatisfactory degradation of triclocarban (TCC) since only 36% were removed in 60 minutes with initial concentration of TCC 20 mg/L. The degradation of clopyralid and the EDCs was studied using three oxidation systems UV/TiO2, UV/H2O2 and O3. Complete degradation of clopyralid (3,6-DCP) was achieved with UV/TiO2 in about 90 minutes at an optimum catalyst concentration of 1g/L. Zero-order kinetics was found to describe the first stage of the photocatalytic reaction in the concentration range 0.078-0.521 mM. At pH 5 the rate constant was 2.09×10⁻⁶ ± 4.32×10⁻⁷ M.s⁻¹. Complete degradation of all the three EDCs was achieved with UV/H₂O₂ in 60 minutes at catalyst concentration of (2.94×10⁻² M). On the other hand complete degradation of the EDCs was achieved in just 2 minutes with ozonation. For high concentration EDCs, TiO₂/UV gave low efficiency of degradation as compared with ozone and H2O2/UV. First-order kinetics was found to describe the photocatalytic reaction of the EDCs.
26

Occurrence des pesticides et des contaminants émergents dans une nappe alluviale. Contraintes apportées par l’origine et le temps de résidence de l’eau. Cas de la nappe de la Vistrenque / Occurrence of pesticides and emerging contaminants in an alluvial aquifer. Linking to groundwater origin and residence time. Case study of the Vistrenque aquifer.

Sassine, Lara 01 December 2014 (has links)
Le but de ce travail est de tester une approche multi-traceurs permettant de caractériser l'origine (éléments majeurs, Sr, Br, 87Sr/86Sr, δ18O, δ2H) et les temps de résidence (3H/3He, CFC, SF6) des eaux, pour identifier l'origine et évaluer le devenir des contaminants dans une nappe alluviale superficielle et peu profonde, la nappe de la Vistrenque. Les molécules étudiées sont les triazines, le métolachlore, le diuron, la carbamazépine, le sulfaméthoxazole, le diclofénac et l'ibuprofène. L'aquifère étudié est alimenté par une recharge directe, occasionnant le lessivage des pesticides des sols, et une recharge latérale provenant de l'aquifère karstique adjacent entraînant une dilution des eaux de la nappe en triazines. Localement, une contribution des eaux de surface (cours d'eau locaux, eau importée du Rhône) à la recharge de la nappe est mise en évidence entraînant également une dilution des eaux de la nappe en triazines mais au contraire une contamination en COE, quoique, en faibles concentrations. Les âges apparents des eaux alluviales échantillonnées, déterminés principalement par le couple 3H/3He, varient entre 1.4 et 22 ans. Le couplage de l'âge des eaux à leurs teneurs en triazines montre une persistance de ces molécules dans le milieu souterrain, et une atténuation de leur signal d'entrée soulignant l'efficacité de leur interdiction en 2003. Finalement, les eaux de la nappe alluviale montrent des rapports de dégradation des triazines variant entre 0,3 pour les eaux influencées par les eaux de surface et 4,8 pour celles montrant des âges apparents de 22 ans, suggérant une augmentation de ce rapport avec le temps de transfert des pesticides dans le système. / The aim of this work is to test a multi-tracer approach allowing the characterization of groundwater origin and residence time in a shallow alluvial aquifer, the Vistrenque aquifer, in order to identify the origin and the fate of contaminants therein. The selected compounds for the study are triazines, metolachlor, diuron, carbamazepine, sulfamethoxazole, diclofenac, and ibuprofen. The studied aquifer is mainly fed by 1) a direct recharge inducing pesticides leaching from soil layers and unsaturated zone and 2) by a lateral recharge from the karst adjacent aquifer, which induces triazines dilution in the alluvial aquifer. A local contribution of surface water (local streams and imported Rhône River water) was evidenced in the alluvial groundwater inducing also triazines dilution but EOCs contamination nevertheless at low concentrations. The apparent age of the alluvial groundwater samples varies between 1.4 and 22 years. Linking groundwater age to triazines contents allowed to highlight, first, the persistence of these compounds in the alluvial groundwater and, second, the decreasing of their input signal in relatively recent groundwater samples in accordance with their forbidding in 2003. Finally, the Vistrenque alluvial groundwater showed triazines degradation ratios varying from 0.3 for groundwater influenced by surface water infiltration to 4.8 for groundwater characterized by relatively older apparent residence time on the order of 22 years. This suggests an increasing ratio with the transfer time of these compounds in the alluvial aquifer system.
27

Catalytic activity of sewage sludge-derived char composite catalysts towards the oxidation of organic contaminants in water / Performances catalytiques de catalyseurs composites dérivés de charbons préparés à partir de boues de station d'épuration dans l'oxydation de polluants organiques dans l'eau

Tu, Yuting 05 December 2014 (has links)
La gestion des boues de station d'épuration est un problème majeur. Dans ce travail, des charbons préparés à partir de boues de station d'épuration (SC) ont été utilisés comme support de catalyseurs. Les performances de ces catalyseurs ont été évaluées dans trois réactions d'oxydation pour le traitement de l'eau : le procédé Fenton, l'oxydation en voie humide catalytique et l'ozonation catalytique. Le catalyseur à base d'oxyde de fer supporté sur ce charbon (FeSC) est très actif dans le procédé de type Fenton pour la décoloration et la minéralisation de l'acide orange II (AOII). Les impuretés inorganiques présentes dans le charbon (cendres), telles que SiO2 et AI2O3, peuvent jouer le rôle de co-catalyseur. Le catalyseur FeSC est également très performant dans l'oxydation en voie humide catalytique du 2-chlorophénol à 120°C sous 0.9 MPa de pression partielle d'oxygène. Cependant, une lixiviation du fer est observée en cours de réaction du fait de la production de HC1 et de petits acides carboxyliques. La lixiviation du fer peut toutefois être évitée lorsque le pH du mélange réactionnel est maintenu en dessus de 4.5, sans que les performances catalytiques n'en soient affectées. Enfin, un catalyseur Mn-g-C3N4 supporté par un charbon obtenu à partir de boue de station d'épuration obtenu par modification de nitrure de carbone par des nanoparticules de manganèse a été synthétisé. L'activité catalytique de ce catalyseur composite est 1.6 fois supérieure à celle du catalyseur Mn-g-C3N4 non supporté. Ce catalyseur composite présente par ailleurs une bonne résistance à l'oxydation et une bonne stabilité, sans qu'aucune lixiviation du manganèse ne soit observée / The disposal of sewage sludge has become an issue of particular concern. In this thesis, sewage sludge derived carbon (SC) was employed as a catalyst support. The catalytic behavior of the prepared SC-based composite catalysts was investigated in three kinds of typical oxidation reactions, including heterogeneous Fenton-like oxidation, catalytic wet air oxidation (CWAO) and catalytic ozonation. Sewage sludge-derived carbon supported iron oxide catalyst (FeSC) showed high Fenton-like performances in the discoloration and mineralization of acid orange II (AOII). Inorganic components in the SC, such as SiO2 and AI2O3 may present have a co-catalytic effect upon Fenton-like reaction. FeSC catalyst also performed quite well in the CWAO of 2-CP at 120°C under 0.9 MPa oxygen partial pressure. However, iron leaching was observed due to the generation of HC1 and some small chain organic acids. Iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Finally, Mn2O3 nanoparticles modified g-C3N4 (Mn-g-C3N4) was synthetized as a novel ozonation catalyst. To enlarge the adsorption capacity of the catalyst and improve its performances in the ozonation of sulfamethoxazole, the Mn-g-C3N4 catalyst was further supported over the sewage sludge-based activated carbon (SBAC). The catalytic activity of the composite catalyst was ca. 1.6 times higher compared to the unsupported Mn-g-C3N4 catalyst. The composite catalyst also exhibited very good resistance towards oxidation, limited Mn leaching and high stability
28

Évaluation du niveau de contamination chimique et de la qualité des ressources vivantes aquatiques / Evaluation of the level of chemical contamination and quality of the aquatic alive resources

Diop, Mamadou 01 April 2016 (has links)
Très appréciés des consommateurs du fait de leur qualité nutritionnelle, les produits de la mer jouent un rôle important dans l'alimentation humaine. Toutefois, la confiance du consommateur vis-à-vis de leur qualité est affectée par les riques associés à une exposition aux contaminants chimiques et à la fraîcheur des produits. Si le premier aspect résulte de la pollution des eaux marines sous l'effet d'une forte anthropisation des littoraux, le second est lié à la haute périssabilité de ces produits. Évaluer les niveaux de contamination chimique et la qualité-fraîcheur des produits de la mer est plus qu'un besoin : c'est aujourd'hui une nécéssité. C'est dans ce contexte que les travaux de cette thèse ont été menés. Deux objectifs principaux ont été visés dans la présente étude. Le premier objectif de ce travail était de faire une évaluation spatiale et saisonnière des niveaux de contamination par les polluants métalliques et organiques (HAPs et PCBs) des zones côtières du Sénégal en s'intéressant aux teneurs en contaminants dans les organismes marins. Nous avons étudié 7 espèces marines représentatives des différents maillons de la chaîne trophique (une macroalgue verte, un mollusque bivalve, un crustacé et 4 espèces de poisson) prélevées le long du littoral au niveau de 5 sites présentant des degrés d'anthropisation différents. Les résultats de cette étude montrent que les teneurs en contaminants chimiques des organismes marins sont variables selon les espèces et soulignent ainsi la nécéssité de l'approche multi-espèces pour l'étude de la contamination chimique du milieu. Des variations inter-sites de la teneur en contaminants chimiques dans les organismes ont été mis en évidence. Les sites les plus anthropisés comme Soubédioune et Rusfisque sont ceux qui présentent les teneurs les plus élevées. Les niveaux de contamination métalliques et organiques dans les organismes marins du littoral sénégalais sont inférieurs ou du même ordre de grandeur que ceux mesurés dans d'autres régions d'Afrique de l'Ouest ou dans d'autres régions du monde. L'évaluation des risques associés à l'ingestion des produits de la mer analysés montre que les teneurs en contaminants chimiques sont faibles et inférieures aux limites maximales admissibles pour la consommation humaine (norme EU). Seuls les sites de Rufisque et Soumbédioune présentent quelques dépassements chez certaines espèces (moules, sardinelles). Le deuxième objectif de cette étude était de développer des méthodes permettant d'évaluer la fraîcheur des filets de poisson et de différencier des filets frais des filets décongelés. Les méthodes retenues sont basées sur la mesure de l'augmentation de la perméabilité cellulaire du muscle de poisson. La conservation des filets de poisson à 4°C va conduire à une perméabilisation des cellules dans le temps qui peut être apréhendée par la mesure de la libération d'enzymes intracytoplasmiques ou par l'augmentation de la perméabilité des cellules à des colorants fluorescents. La mesure de l'activité LDH est intéressante à double titre : elle va permettre d'une part de mesure le niveau de lyse cellulaire, donc le niveau d'altération, des filets de poisson dans le temps. Elle va permettre d'autre part grâce à sa sensibilité à la congélation de mieux cerner les conditions qui permettraient à terme de faire la distinction entre les filets frais et des filets congelés/décongelés. / Much appreciated by consumers for its nutritional qualities, seafood plays an important role in human diet. Consumer confidence in the quality of these foodstuffs is nevertheless affected by concerns about risks associated with exposure to chemical contaminants and the freshness of these products. If the first of these is the result of pollution resulting from increasing human activities along coastlines, the second is linked to the highly perishable nature of these products. An evaluation of the levels of chemical contaminants in seafood and of its freshness is therefore a necessity. It is within this context that the work presented in this thesis was carried out. Two principal objectives were targeted in the present study. The first objective of this work was to evaluate the spatial and seasonal variability of seafood contamination by elements (including metals) and organic pollutants (PAHs and PCBs) along the Senegalese coast. We studied 7 marine species representative of different trophic level (a green macro algae, a bivalve mollusc, a crustacean and 4 species of fish) sampling them along the coastline at 5 sites representing different human activity pressur. The result of this study showed that contamination levels varied with species, underlining the importance of a multi-species approach to study contamination in the marine environment. Variations between sites were also observed. Sites with the greatest human activity, such as Soumbédioune and Rufisque, were also those where the highest levels of contaminants in seafood were found. The levels of contamination measured along the Senegalese coast, of both elements and organic pollutants, were inferior or of the same order of magnitude as those reported from other West African sites or from other regions of the globe. The risks associated with eating theseseafood products were low, with contaminant levels generally below the admissible limits (EU) for human consumption. Only a few samples of certain species (mussels, sardines) exceeded these limits at Soumbédioune and Rufisque. The second objective of this study was to develop methods to evaluate the freshness of fish fillets, and to distinguish fresh fillets from previously frozen ones. The methods developed were based upon a measure of cellular permeability within the fish muscle tissue. The conservation of fish fillets ar 4°C results in increased permeability of cells over time, measurable by studying the liberation of intra-cytoplasmic enzymes or the increasing permeability of cells to fluorescent colouring agents. The measurements of lactate dehydrogenase (LDH) is doubly interesting in this contex : on the one hand it enables a measure of cell lysis, and so the level of alteration of the fillets over time, to be established. It also, thanks to its sensitivity to freezing, to better distinguish fresh fillets from those that have been frozen then thawed.
29

Comportement à long terme, caractérisation opérationnelle et évaluation environnementale des contaminants organiques des sédiments de dragage / Long-term behavior, operational characterization and environmental assessment of organic contaminants in dredged sediments

Charrasse, Benoit 16 December 2013 (has links)
Chaque année, 65 millions de m3 de sédiments sont extraits par dragage des ports, des canaux, des rivières et des fleuves français. Ces matériaux sont souvent contaminés par des métaux lourds, pesticides et autres polluants organiques accumulés au cours du temps, et doivent être stockés à terre. La valorisation des sédiments contaminés est encadrée par des guides techniques et par la réglementation en vigueur. Ces guides proposent une méthodologie d’évaluation et des valeurs seuils protectrices pour la santé humaine et l’environnement, utilisant les teneurs totales en composé organique hydrophobe (COH). Ce travail évalue le comportement environnemental à long terme de sédiments contaminés et précise quels sont les paramètres et les mécanismes contrôlant la mobilité des polluants organiques, afin de passer dans les études du danger au risque. 5 sédiments de natures différentes ont été suivis au laboratoire pendant 18 mois, et diverses méthodes de mesure des fractions solides, colloïdales et dissoutes ont été pratiquées. La matière organique des sédiments est hétérogène et possède une multitude de sites de sorption. La présence d’origine exogène de suie et de matières organiques condensées (Black Carbon) et d’hydrocarbures est responsable de la forte rétention des COH dans le sédiment (coefficients de partage Kd élevés et cinétiques de désorption très lentes).Une modélisation à partir des coefficients de partage, même avec des estimations très fines, peut largement sous-évaluer le risque environnemental (facteur 1000) car la mobilité des COH au travers des colloïdes ou macromolécules dissoutes n’est pas prise en compte dans les modèles d’émission et de transport classiques. / Each year, 65 million m3 of sediment are removed by dredging of harbors, canals, rivers and French rivers. These materials are often contaminated with heavy metals, pesticides and other organic pollutants accumulated over time, and should be stored ashore. The re-use of contaminated sediments under various scenarii is supervised by technical guidelines and regulations. These guides offer an evaluation methodology and thresholds for protecting human health and the environment, using the total solid concentrations of hydrophobic organic compound (HOC). This work evaluates the long-term environmental behavior of contaminated sediments and precisely what are the parameters and mechanisms controlling the mobility of organic pollutants, to assess risk rather than hazard. 5 sediments were monitored in the laboratory for 18 months, and various methods of measuring solid, colloidal and dissolved fractions were performed. The organic matter in sediments is heterogeneous and has a multitude of sorption sites. The presence of exogenous origin of soot and condensed organic matter (Black Carbon) and hydrocarbons is responsible for the high retention of HOC in the sediment (high partition coefficients Kd and very slow desorption kinetics). Classical modeling of the dissolved phase by partition coefficients, even refined, may significantly under-estimate the environmental risk (factor up to 1000) because the mobility of COH through colloids or dissolved macromolecules is not taken into account in the conventional transmission and transport models.
30

Développement des méthodes analytiques pour la détection et la quantification de traces des HAP et de pesticides dans l'eau : application à l'étude de la qualité des eaux libanaises

Kouzayha, Abir 08 December 2011 (has links)
La pollution des eaux est particulièrement problématique pour les pays industrialisés et les pays en développement. Des suivis environnementaux se sont alors avérés nécessaires afin de progresser dans la compréhension des origines et des conséquences de la présence de ces polluants. Parmi les polluants organiques les plus dangereux, les Hydrocarbures Aromatiques Polycycliques (HAP) et les pesticides qui peuvent se retrouver à l’état de traces dans les milieux aquatiques. Leur analyse nécessite des méthodes analytiques à la fois spécifiques et sensibles. L’Extraction sur Phase Solide (SPE) suivi d’une analyse par la Chromatographie Gazeuse couplée à la Spectrométrie de Masse (GC-MS) est la méthode la plus couramment employée. Les travaux de thèse s’inscrivent ainsi dans l’optique généralevisant à développer des nouvelles méthodes analytiques pour l’extraction et l’analyse de cesdeux familles de polluants organiques présents dans l’eau. Afin de pallier les contraintes classiques de la SPE, une nouvelle approche a été développée qui consiste à introduire latechnique de centrifugation dans certaines étapes de la procédure SPE. La nouvelle méthodeélaborée a permis de réduire considérablement le temps de préparation et d’économiserl’utilisation et le rejet des solvants organiques, en réduisant presque 10 fois les volumes nécessaires à l’obtention des rendements de récupération satisfaisants. Une méthoded’analyse par injection à température programmable (PTV) a été optimisée afin d’améliorerles seuils de détection des HAP. Cette étude a permis également d’avoir les informations surla qualité des eaux de pluie, eaux souterraines et eaux de surface au Liban quant au niveau deleur contamination pour les HAP et les pesticides. / Water pollution presents a very critical problem facing industrial and developping countries. The environmental monitoring of the contaminants seems necessary to understand their sources and impacts. Among a wide variety of organic pollutants present in water,polycyclic aromatic hydrocarbons (PAHs) and pesticides are of particular importance as widespread, persistent, and toxic contaminants. They are usually present at trace levels in theacquatic surfaces; therefore their detection and control require selective and sensitiveanalytical procedures. The Solid-Phase Extraction (SPE) followed by the Gas-Chromatography coupled to Mass Spectrometry (GC-MS) are the most commonly usedtechniques for their analysis in water. Thesis objectives are focused on the development of new analytical methods for the extraction and analysis of these two families of pollutants present in water. To overcone the contraints of the traditional SPE, a new approach was developed consisting on the introduction of the centrifugation in several steps of the procedure. The new method showed practical environmental and economical advantages interms of sample preparation time, simplicity, reduction in solvent use, and cost and isparticularly suitable for routine applications requiring a high sample throughput. Aprogrammed temeperature vaporizing (PTV) injection method was also optimized and validated in order to improve the detection limits for the GC-MS analysis of PAHs. The evaluation of the quality of different water systems in Lebanon including rainwater,groundwater, drinking water and surface water was accomplished in this study.

Page generated in 0.0428 seconds