• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 31
  • 28
  • 17
  • 10
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 275
  • 275
  • 51
  • 42
  • 38
  • 37
  • 37
  • 35
  • 34
  • 33
  • 33
  • 33
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Perylene-Based Materials: Potential Components in Organic Electronics and Optoelectronics

An, Zesheng 17 August 2005 (has links)
Perylene-based materials, including charge-transport discotic liquid crystals and charge-transfer long-wavelength absorbing chromophores, for potential organic electronic and optoelectronic applications, were designed, synthesized and characterized. Two types of discotic liquid crystals, perylene diimides and coronene diimides, can form columnar liquid crystalline phases over a wide temperature range; many of them can have room-temperature liquid crystalline phases after cooling from isotropic liquid. Their charge transport properties were studied by space-charge limited current method; high charge carrier mobilities, with the highest being up to 6.6 cm2/Vs, were found in liquid crystalline phases of these materials under ambient conditions. Structural variables, including aromatic cores and side groups, were examined to get a certain degree of understanding of charge transport properties in these discotic liquid crystals. It was found that mesophase order can have an important effect on charge carrier mobilities. The discotic liquid crystals with high charge carrier mobilities are serious candidates for use in large-area low-cost applications such as solar cells. Long-wavelength, highly absorbing chromophores, featuring donor-substituted perylene diimides, were generated by a combination of charge-transfer process and conjugation extension. The charge-transfer chromophores are expected to lead to further investigation on their potentials as sensitizers in Grtzel solar cells.
92

The effects of ITO surface modification on lifetime in organic photovoltaic devices and a test setup for measuring lifetime

Sutcu, Sinan Mahmut 07 July 2010 (has links)
Though relatively young, the field of organic electronics is a rapidly growing market and considerable research is being done in creating a whole range of devices from organic molecules from organic field effect transistors to LEDs to photovoltaic devices. The field of organic photovoltaic in particular has become important in recent years with the push for newer, renewable sources of energy to end the dependence on fossil fuels. While the efficiencies of organic photovoltaic devices continue to rise, one barrier to their commercial adoption has been the limited lifetimes of these devices. While certain degradation methods of organic photovoltaics, such as photo-oxidation, have been extensively studied and solutions to these problems, such as encapsulation, are being researched, certain other degradation mechanisms are less understood and studied. The focus of this thesis is on one such degradation mechanism, UV degradation, specific to the ITO-pentacene interface in pentacene/C60 organic photovoltaic devices. Attempts were made to increase the lifetime of the devices by using phosphonic acids or oxygen plasma to modify the surface of the ITO. While conducting these experiments, the lack of a system to test the lifetime of multiple devices for long periods of time became apparent. As such as system was a requirement for future research into the lifetimes of organic photovoltaic devices a system was designed and built. The system would operate the photovoltaic device in a way comparable to its end-use and would allow over 100 devices to be tested simultaneously for durations exceeding 10,000 hours if necessary. This system would allow for statistically significant lifetime testing to be carried out in the future.
93

Cruciform pi-systems: novel two-dimensional cross-conjugated chromophores possessing spatially separated frontier molecular orbitals

Zucchero, Anthony Joseph 30 August 2010 (has links)
The design of chromophores targets materials with optoelectronic properties necessary for advanced applications. Organic materials possess properties which emerge from the collective impact of the constituent backbone and substituents as well as their connectivity (i.e. molecular architecture), necessitating the exploration of novel conjugated architectures. This thesis chronicles our examination of 1,4-distyryl-2,5-bis(arylethynyl)benzenes (cruciforms, XFs). Electronic substitution of this 'X-shaped' cross-conjugated scaffold tunes both the energy levels and the spatial distribution of the frontier molecular orbitals (FMOs) in XFs. The resulting fluorophores exhibit FMO separation, imbuing XFs with desirable properties for sensory applications. Using model analytes, we examine how the underlying FMO arrangement and the nature of analyte interaction elicit observable responses. These studies provide a foundation for future access of functional responsive ratiometric cores. This case study demonstrates the importance and unique potential of FMO-separated fluorophores.
94

Synthesis and characterization of large linear heteroacenes and their derivatives

Appleton, Anthony Lucas 08 November 2010 (has links)
The work presented in this thesis is primarily concerned with the synthesis and characterization of large, linear heteroacenes and their derivatives. We have been able to significantly expand on the types of materials available for application in organic electronic device architectures. In particular, the work focused on solution processible and novel derivatives of thiadiazoles, diazatetracenes, diazapentacenes, tetrazapentacences, and N,N-dihydrotetraazaheptacene. Extensive computational studies have been performed in order to better understand the optoelectronic properties of these materials. Although no devices have been fabricated that show appreciable hole or electron mobility, the properties of these materials are very promising. Besides our work on organic electronic materials for application in optoelectronic devices, we have also been able to develop, via the Click reaction, a series of aqueous metal sensors for copper (II), nickel (II), and silver (I) based upon fluorescence quenching. The use of a modified Stern-Volmer equation was necessary to fit the data in order to obtain binding constants. The exploration of new materials and their properties in the area of organic electronics is an exciting field for the synthetic organic chemist, as the goals associated with this work strive to impact humanity in a positive manner by reducing energy costs.
95

Understanding the impact of polymer self-organization on the microstructure and charge transport in poly(3-hexylthiophene)

Aiyar, Avishek R. 06 January 2012 (has links)
Conjugated polymers represent the next generation of conducting materials that will enable technological devices incorporating thin film transistors, photovoltaic cells etc., in a cost-effective roll-to-roll manner. Given the importance of microstructure on charge transport, ordered self-assembly in polymeric semiconductors assumes paramount relevance. This thesis thus focuses on a fundamental investigation of the correlations between the morphology and microstructure of the first high mobility solution processable semiconducting polymer, poly(3-hexylthiophene)(P3HT), and its corresponding charge transport properties. The evolution of polymer chain conformations is first studied, leading up to the formation of the conducting channel. An intermediate lyotropic liquid crystalline phase is identified, characterized by anisotropic ordering of the polymer chains. Methods for tuning the microstructure of P3HT thin films are also discussed, with an emphasis on understanding the role of molecular parameters, such as regioregularity and process parameters such as the film formation method. An ultrasound based technique for inducing the formation of ordered π-stacked molecular aggregates is also introduced. The results presented here not only provide understanding of microstructure-charge transport correlations, but also the very process of film formation in solution processable organic semiconductors, which could in turn hold the key to approaching the mobility benchmark represented by single crystals.
96

Theoretical investigation of polar zinc oxide surface modification via phosphonic acid self-assembled monolayers

Wood, Christopher Alan 17 January 2012 (has links)
The interface of a zinc-terminated polar zinc oxide surface (0002) with a series of chemisorbed fluorinated benzylphosphonic acids has been studied using density functional theory. The calculations indicate that there is a substantial change in the binding energies and work function modification depending on the binding motif. The results also indicate that there is a pronounced difference in the magnitude and trends of the factors determining the total change in work function. The oxygen core-level binding shifts have been calculated and compared to available experimental data.
97

A Molecularly Switchable Polymer-Based Diode / En Molekylärt Switchbar Polymerbaserad Diod

Hultell Andersson, Magnus S. January 2002 (has links)
<p>Despite tremendous achievements, the field of conjugated polymers is still in its infancy, mimicking the more mature inorganic, i.e. silicon-based, technologies. We may though look forward to the realisation of electronic and electrochemical devices with exotic designs and device applications, as our knowledge about the fundamentals of these promising materials grow ever stronger. </p><p>My own contribution to this development, originating from an idea first put forward by my tutor, Professor Magnus Berggren, is a design for a switchable polymer-based diode. Its architecture is based on a modified version of a recently developed highly-rectifying diode,12 where an intermediate molecular layer has been incorporated in the bottom contact. Due to its unique ability to switch its internal resistance during operation, this thin layer can be used to shift the amount of (forward) current induced into the rectifying structure of the device, and by doing so shift its electrical characteristics between an insulating and a rectifying behaviour (as illustrated below). Such a component should be of great commercial interest in display technologies since it would, at least hypothetically, be able to replace the transistors presently used to address the individual matrix elements. </p><p>However, although fairly simple in theory, it proved to be quite the challenge to fabricate the device structure. Machinery errors and contact problems aside, several process routes needed to be evaluated and only a small fraction of the batches were successful. In fact, it was not until the very last day that I detected the first indications that the concept might actually work. Hence, several modifications might still be necessary to undertake in order to get the device to work properly.</p>
98

Synthesis of conjugated polymers and block copolymers via catalyst transfer polycondensation

Ono, Robert Jun 26 September 2013 (has links)
Conjugated polymers hold tremendous potential as low-cost, solution processable materials for electronic applications such organic light-emitting diodes and photovoltaics. While the concerted efforts of many research groups have improved the performance of organic electronic devices to near-relevant levels for commercial exploitation over the last decade, the overall performance of organic light-emitting diode and organic photovoltaic devices still lags behind that of their traditional, inorganic counterparts. Realizing the full potential of organic electronics will require a comprehensive, molecular-level understanding of conjugated polymer photophysics. Studying pure, well-defined, and reproducible conjugated polymer materials should enable these efforts; unfortunately, conjugated polymers are typically synthesized by metal-catalyzed step-growth polycondensation reactions that do not allow for rigorous control over polymer molecular weight or molecular weight distribution (i.e., dispersity). Chain-growth syntheses of conjugated polymers would not only allow for precise control over the aforementioned polymer metrics such as molecular weight and dispersity, but could also potentially create new applications by enabling the preparation of more advanced macromolecular structures such as block copolymers and surface grafted polymers. Our efforts toward realizing these goals as well as toward exploiting chain-growth methodologies to better understand fundamental conjugated polymer photophysics and self-assembly will be presented. / text
99

Theoretical studies of the structure-property relationships of hole- and electron-transport materials for organic photovoltaic applications

Pandey, Laxman 18 September 2013 (has links)
Donor-acceptor and thiophene based π-conjugated molecules and polymers, along with fullerene derivatives, are extensively used active components in the photoactive layer of organic photovoltaic devices. In this dissertation, we make use of several computational methodologies to investigate structure-property relationships of these organic systems in their molecular forms. We begin with an overview of the field of organic photovoltaics and some of the important problems in organic solar cells that are currently being investigated. This is then followed by a brief review of the electronic-structure methods (e.g. Hartree-Fock theory, Density Functional Theory, and Time-dependent Density Functional Theory) that are employed. We then present the main results of the dissertation. Chapter 3 provides a broad overview on how changes to the donor-acceptor copolymer chemical structure impacts its intrinsic geometric, electronic, and optical properties. Chapter 4 focuses on the characterization of the lowest excited-states and optical absorption spectra in donor-acceptor copolymers. In Chapter 5, we investigate the effects of alkyl side-chain placements in the π-conjugated backbone of oligothiophenes and how that impacts their intramolecular properties as well as the oligomer:fullerene interfacial interactions. Chapter 6 presents our investigation on the role of oligomer:fullerene configuration and reorganization energy on exciton-dissociation and charge-recombination processes. Finally, a synopsis of the work and further considerations are presented in Chapter 7.
100

Analyzing photochemical and physical processes for organic materials

Cone, Craig William 07 February 2011 (has links)
Since their discovery, organic electronic materials have been of great interest as an alternative active layer material for active area materials in electronic applications. Initially studied as probes or lasing material the field has progressed to the point where both conjugated polymers and small organics have become fashionable objects of current device oriented solid state research. Organic electronic materials are liquid crystalline materials, packing into well-ordered domains when annealed thermally or via solvent annealing. The macromolecular orientation of the molecules in the solid state causes a shift in the electronic properties due to coupling of the dipoles. The amount of interaction between molecules can be correlated to different nanoscale morphologies. Such morphologies can be measured using microscopy techniques and compared to the spectroscopic results. This can then be extrapolated out to infer how the charges move within a film. Cyanine dyes represent an interesting form class of dyes as the molecular packing is strongly affected by hydrophilic and hydrophobic pendent groups, which cause the dye to arrange into a tubular bilayer. Spectroelectrochemistry is used to monitor and controllably oxidize the samples. Using singular value decomposition (SVD) it is possible to extract each electronic species formed during electrochemical oxidation and model the proposed species using semi empirical quantum mechanical calculations. Polyfluorene is a blue luminescent polymer of interest for its high quantum yield. The solution and solid-state conformation has shown two distinct phases. The formation of the secondary phase shows a dependence on the molecular weight. In a poor solvent, as the molecular weight increases, the secondary phase forms easier. In the solid state, the highly efficient blue emission from polyfluorene is degraded by ketone defects. The energy transfer to preexisting ketone defects is increased as the filmed is thermally ordered. Glass transitions of block copolymers are studied using synthetically novel polymers where an environmentally sensitive fluorescent reporter is placed within various regions of a self-assembled film. Different dynamics are observed within the block of the film then specifically at the interface of two blocks. / text

Page generated in 0.0402 seconds