• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 28
  • 28
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrasound and photoacoustic imaging for cancer detection and therapy guidance

Kim, Seungsoo 13 October 2011 (has links)
Cancer has been one of main causes of human deaths for many years. Early detection of cancer is essential to provide definitive treatment. Among many cancer treatment methods, nanoparticle-mediated photothermal therapy is considered as one of the promising cancer treatment methods because of its non-invasiveness and cancer-specific therapy. Ultrasound and photoacoustic imaging can be utilized for both cancer detection and photothermal therapy guidance. Ultrasound elasticity imaging can detect cancer using tissue elastic properties. Once cancer is diagnosed, spectroscopic photoacoustic imaging can be used to monitor nanoparticle delivery before photothermal therapy. When nanoparticles are well accumulated at the tumor, ultrasound and photoacoustic-based thermal imaging can be utilized for estimating temperature distribution during photothermal therapy to guide therapeutic procedure. In this dissertation, ultrasound beamforming, elasticity imaging, and spectroscopic photoacoustic imaging methods were developed to improve cancer detection and therapy guidance. Firstly, a display pixel based synthetic aperture focusing method was developed to fundamentally improve ultrasound image qualities. Secondly, an autocorrelation based sub-pixel displacement estimation method was developed to enhance signal-to-noise ratio of elasticity images. The developed elasticity imaging method was utilized to clinically evaluate the feasibility of using ultrasound elasticity imaging for prostate cancer detection. Lastly, a minimum mean square error based spectral separation method was developed to robustly utilize spectroscopic photoacoustic imaging. The developed spectroscopic photoacoustic imaging method was utilized to demonstrate ultrasound and photoacoustic image-guided photothermal cancer therapy using in-vivo tumor-bearing mouse models. The results of these studies suggest that ultrasound and photoacoustic imaging can assist both cancer detection and therapy guidance. / text
2

Quantitative photoacoustic tomography for breast cancer screening / Tomographie photoacoustique quantitative pour le dépistage du cancer du sein

Song, Ningning 29 September 2014 (has links)
Ces travaux de thèse sont motivés par le développement de techniques d’imagerie alternatives pour le diagnostic précoce du cancer du sein. Parmi celles-ci, l’imagerie photoacoustique couple potentiellement les avantages de deux modalités d’imagerie non-invasives, à savoir la quantification de contrastes physiologiques du fait de l’excitation optique et la haute résolution du fait d’un sondage acoustique.Le but de ces travaux est de proposer une modélisation multiondes du phénomène photoacoustique, et d’incorporer ce modèle dans un algorithme de reconstruction efficace pour résoudre le problème inverse. Celui-ci se rapporte à la reconstruction de cartes de propriétés physiques (optique et/ou acoustiques) de l’intérieur du sein. La Méthode des Eléments Finis (MEF) a été retenue pour résoudre l’équation de propagation optique. Pour la résolution de l’équation de propagation acoustique, une méthode semi-analytique, basée sur des calculs par transformées de Fourier (méthod k-space), a été choisie. Pour la résolution du problème inverse, deux approches ont été étudiées : i) un sondage passif, permettant de remonter à la distribution de pression initiale, à l’aide de la méthode de retournement temporel ; ii) un sondage actif, où l’on interroge le milieu sélectivement sous différentes excitations, permettant de remonter quantitativement aux propriétés optiques du milieu. On appelle cette dernière approche Tomographie PhotoAcoustique Quantitative (TPAQ). Une étude spécifique sur le protocole d’illumination/détection a été conduite, prenant également en compte les contraintes expérimentales. / The present work was motivated by the development of alternative imaging techniques for breast cancer early diagnosis, that is photoacoustic imaging, which potentially couples the merits of optical imaging and ultrasound imaging, that is high optical functional contrasts brought by optical probing and high spatial resolution by ultrasound detection. Our work aims at modeling the photoacoustic multiwave phenomenon and incorporate it in an efficient reconstruction algorithm to solve the inverse problem. The inverse problem consists in the recovery of interior maps of physical properties of the breast. The forward model couples optical and acoustic propagations. The Finite Element Method (FEM) was chosen for solving the optical propagation equation, while a semi-analytical method based on Fourier transforms calculations (k-space method) was preferred for solving the acoustic propagation equation. For the inverse model, time reversal method was adopted to reconstruct the initial pressure distribution, an active approach of the inverse problem was also achieved, which decoupled the optical properties from measured photoacoustic pressure, this approach is called quantitative photoacoustic tomography (QPAT), in this approach, illumination/detection protocol was studied, and the experimental set up is also take into consideration. In the last step, photoacoustic pressure measurements obtained from experiment and simulation are studied and compared.
3

Synthesis and Evaluation of Nanoparticle-based Probes for Visualizing the Concentration and Fluctuation of Oxygen in Living Cells / 細胞内の酸素濃度および変動を可視化するナノ粒子プローブの合成と機能評価

Umehara, Yui 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22460号 / 工博第4721号 / 新制||工||1737(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 近藤 輝幸, 教授 大江 浩一, 教授 中村 正治 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
4

Studies on Activatable Chemical Probes Based on Sulfur Nucleophilicity for Fluorescence and/or Photoacoustic Bioimaging / 蛍光および光音響生体イメージングを指向した硫黄の求核性を基盤とするactivatable化学プローブに関する研究

Mu, Huiying 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23215号 / 工博第4859号 / 新制||工||1758(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 大江 浩一, 教授 近藤 輝幸, 教授 深澤 愛子 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
5

Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer / 光音響イメージングを用いた乳房表層における血管分岐点計測は乳癌におけるバイオマーカーとなる可能性がある

Yamaga, Iku 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21684号 / 医博第4490号 / 新制||医||1036(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 松田 道行, 教授 松田 秀一, 教授 椛島 健治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
6

Design and synthesis of donor-acceptor-donor xanthene-based near infrared I and shortwave infrared (SWIR) dyes for biological imaging

Rathnamalala, Chathuranga 12 May 2023 (has links) (PDF)
Small molecule organic dyes with absorption and emission in the near infrared region (NIR) attracted much attention for various applications such as dye sensitized solar cells, fluorescent guided surgery, stimuli responsive bioimaging and photodynamic therapy. Dyes with high absorption and emission in the NIR region are beneficial for stimuli responsive bioimaging due to the deeper penetration of NIR light, less cell damage, high resolution, and low background autofluorescence from biomolecules. Of the many small molecule dyes, xanthene-based dyes exhibit outstanding photophysical properties and good stimuli response for use in bioimaging applications. However, absorption and emission of the xanthene dyes lie in the visible region, which limit their applications in cellular imaging. Many of the NIR dyes have very poor fluorescence; consequently, an alternative approach to fluorescent imaging is photoacoustic imaging that uses sound waves to generate pictures of deep tissues. In this dissertation, we discuss the utility of xanthene based NIR dyes as photoacoustic imaging contrast agents for multiplex imaging and deep tissue nitric oxide sensing in the drug-induced liver injury. Chapter I discuss the fundamentals of fluorescence and photoacoustic imaging, background of the xanthene dyes and other fluorescent dyes, and the design strategies to develop NIR xanthene-based dyes. Chapter II is based on our approach to the design and synthesis of NIR xanthene-based dyes by C-H bond functionalization, with the first example being Rhodindolizine, which absorb and emits in NIR II or short-wave infrared (SWIR) region. In chapter III, we describe the design and synthesis of thienylpiperidine xanthene-based NIR and shortwave-infrared (SWIR) dyes for the photoacoustic imaging. One dye in particular (XanthCR-880) boasts a strong PA signal at 880 nm with good biological compatibility and photostability, yields multiplexed imaging with an aza-BODIPY reference dye, and is detected at a depth of 4 cm. In chapter IV, we report a series of SWIR dyes based on a dibenzazepine donor conjugated to thiophene (SCR-1, SCR-4), thienothiophene (SCR-2, SCR-5), and bithiophene (SCR-3, SCR-6). We leverage the fact that SCR-1 undergoes a bathochromic shift when aggregated to develop a ratiometric nanoparticle for nitric oxide (NO) (rNP-NO). rNP-NO was used to successfully perform in vivo studies to visualize pathological levels of nitric oxide in a drug-induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Chapter V describes another series of xanthene-based dyes with a thiophene ᴫ spacer and several different donors. UV-Vis absorption studies were performed after converting the dyes to the opened form with trifluoracetic acid. These novel XanthCR-TD dyes exhibit absorption maxima in NIR I region from 700 - 900 nm.
7

Desenvolvimento de nanoflores de ouro fotoativas para terapia e diagnóstico de câncer / Development of photoactive gold nanoflowers for therapy and diagnostic of cancer

Santos, Olavo Amorim 20 October 2017 (has links)
Nanopartículas de ouro têm mostrado enorme potencial de aplicação em modalidades diagnósticas e terapêuticas fotoativadas. Em especial, nanoestruturas de ouro anisotrópicas ramificadas apresentam excelente desempenho atuando tanto como contrastes de imagens fotoacústicas, quanto como agentes ativos para terapias fototérmicas de câncer. Apesar dos avanços nas suas rotas de síntese, o desenvolvimento dessas nanoestruturas de forma simples e reprodutível ainda é desafiador. O presente trabalho visou o desenvolvimento de nanopartículas de ouro anisotrópicas ramificadas, ou nanoflores, que sejam fotoativas no infravermelho-próximo para a terapia e diagnóstico de câncer. Em particular, buscou-se o desenvolvimento de uma síntese simples para sua obtenção, assim como a verificação de sua atuação como agente de contraste fotoacústico e como agente ativo para hipertermia de tumores. Para tanto, desenvolveu-se uma síntese in situ que permitiu a obtenção de nanoflores monodispersas com tamanho e propriedades ópticas controláveis. Através da variação de aspectos da síntese, como a temperatura e a concentração de ouro, foi possível sintonizar a atividade óptica das partículas entre 590 e 960 nm. Sua formação foi confirmada por microscopia eletrônica de varredura, espalhamento de luz dinâmico e espectroscopia UV-visível. As partículas apresentaram boa estabilidade de suas características físico-químicas por dois meses e meio. Ainda, as nanoflores se mostraram estáveis, também, quando suspensas em meio de cultura, sob irradiação de lasers, e quando mantidas a temperatura corpórea por longos intervalos. Sua resposta fotoacústica foi caracterizada, apresentando sinais significativos e permitindo a obtenção de imagens claras de sua localização, mesmo em baixas concentrações. Testes realizados em cultura de células mostraram que as nanoflores foram eficazes na hipertermia de uma linhagem de hepatocarcinoma de rato (HTC), ao mesmo tempo que não apresentaram sinais de toxicidade a uma linhagem de fibroblastos de camundongos (FC3H). Esses resultados revelam uma possibilidade simples de fabricação de nanoestruturas de ouro anisotrópicas ramificadas, que podem servir como uma plataforma promissora para o diagnóstico e terapia do câncer. / Gold nanoparticles have shown enormous potential of application in photodiagnostic and in phototherapeutic procedures. Notably, branched anisotropic gold nanostructures present distinguished performance acting as contrast agents of photoacoustic images and as active agents for photothermal therapies for cancer. Despite advances in their synthesis routes, the growth of these nanostructures in a simple and reproducible way is still challenging. The present study was aimed at developing branched anisotropic gold nanoparticles, coined nanoflowers, that are photoactive in the near-infrared for therapy and diagnosis of cancer. In particular, we sought to develop a simple synthesis route, as well as to verify its application for both, as photoacoustic contrast agents and as active agents for tumor hyperthermia. An in situ synthesis was developed which allowed the development of monodisperse nanoflowers with controllable size and optical properties. Through variations of certain aspects of this procedure, such as temperature and gold ions concentration, it was possible to tune the optical activity of the particles between 590 and 960 nm. The nanostructure morphology was confirmed by scanning electron microscopy, dynamic light scattering and UV-visible spectroscopy. The particles exhibited consistent physicochemical characteristics and good stability for two and a half months. Furthermore, the nanoflowers were also stable when suspended in cell culture medium, under laser irradiation and when maintained at body temperature for long intervals. Its photoacoustic response was characterized, presenting significant responses and generating clear images of its location, even at low concentrations. In vitro tests revealed that these nanoflowers were effective therapeutic agents for photothermal therapy of a rat hepatocarcinoma (HTC) lineage, while showing no signs of toxicity to mouse fibroblast (FC3H) cell line. These results reveal a simple procedure of synthesizing branched anisotropic gold nanostructures, which can serve as a promising platform for cancer diagnosis and therapy.
8

Photoacoustic Imaging Using Chirp Technique: Comparison with Pulsed Laser Photoacoustics

Lashkari, Bahman 10 January 2012 (has links)
The application of photoacoustic (PA) phenomena to medical imaging has been investigated for more than a decade. To implement this modality, one may choose between two types of laser sources, pulsed or continuous wave (CW). This selection affects all features of the imaging technique. Nowadays pulsed lasers are the state-of-the-art technique in the PA research. In this work, various features of the alternative frequency-domain (FD) PA were investigated. An axially symmetric transfer function model of PA wave generation and a Krimholtz-Leedom-Matthaei (KLM) transducer model were developed and used to analyze the experimental results. The controllable parameters of the FD-PA were optimized to improve the signal-to-noise ratio (SNR), contrast, axial resolution and depth detectivity. For example, it was shown that employing the optimal chirp bandwidth can enhance the SNR by more than 10 dB. In addition to the image produced by the cross-correlation amplitude, the phase of the correlation signal was used as a separate channel. A statistical method was introduced to generate an image from this phase channel, and also to filter the PA amplitude channel. A study was also performed to compare FD PA and the prevalent pulsed method. Various features of both methods were examined experimentally using a dual-mode PA system and under the condition of maximum permissible exposure (MPE). The SNRs of both methods were evaluated theoretically and experimentally. It was shown that at low frequencies, both modalities generate comparable SNRs, and at high frequencies pulsed PA produces superior SNRs and depth detetivity. However, by increasing the laser power and decreasing the chirp duration within the safety limits, the SNR and depth detectivity of the FD-PA method are enhanced considerably. The main cause to achieve lower experimental SNRs than theoretical predictions for pulsed PA response was shown to be the oscillating baseline, which can be partially eliminated by filtering.
9

Photoacoustic Imaging Using Chirp Technique: Comparison with Pulsed Laser Photoacoustics

Lashkari, Bahman 10 January 2012 (has links)
The application of photoacoustic (PA) phenomena to medical imaging has been investigated for more than a decade. To implement this modality, one may choose between two types of laser sources, pulsed or continuous wave (CW). This selection affects all features of the imaging technique. Nowadays pulsed lasers are the state-of-the-art technique in the PA research. In this work, various features of the alternative frequency-domain (FD) PA were investigated. An axially symmetric transfer function model of PA wave generation and a Krimholtz-Leedom-Matthaei (KLM) transducer model were developed and used to analyze the experimental results. The controllable parameters of the FD-PA were optimized to improve the signal-to-noise ratio (SNR), contrast, axial resolution and depth detectivity. For example, it was shown that employing the optimal chirp bandwidth can enhance the SNR by more than 10 dB. In addition to the image produced by the cross-correlation amplitude, the phase of the correlation signal was used as a separate channel. A statistical method was introduced to generate an image from this phase channel, and also to filter the PA amplitude channel. A study was also performed to compare FD PA and the prevalent pulsed method. Various features of both methods were examined experimentally using a dual-mode PA system and under the condition of maximum permissible exposure (MPE). The SNRs of both methods were evaluated theoretically and experimentally. It was shown that at low frequencies, both modalities generate comparable SNRs, and at high frequencies pulsed PA produces superior SNRs and depth detetivity. However, by increasing the laser power and decreasing the chirp duration within the safety limits, the SNR and depth detectivity of the FD-PA method are enhanced considerably. The main cause to achieve lower experimental SNRs than theoretical predictions for pulsed PA response was shown to be the oscillating baseline, which can be partially eliminated by filtering.
10

Biomedical photoacoustics beyond thermal expansion : photoacoustic nanoDroplets

Wilson, Katheryne Elizabeth 25 June 2012 (has links)
The recent increase in survival rates of most cancers is due to early detection greatly aided by medical imaging modalities. Combined ultrasound and photoacoustic imaging provide both morphological and functional/molecular information which can help to detect and diagnose cancer in its earliest stages. However, both modalities can benefit from the use of contrast agents. The objective of this thesis was to design, synthesize, and test a nano-sized, dual contrast agent for combined ultrasound and photoacoustic imaging named Photoacoustic nanoDroplets. This agent consists of liquid perfluorocarbon nanodroplets with encapsulated plasmonic nanoparticles. These dual contrast agents utilize optically triggered vaporization for photoacoustic signal generation, providing significantly higher signal amplitude than that from the traditionally used mechanism, thermal expansion. Upon pulsed laser irradiation, liquid perfluorocarbon undergoes a liquid-to-gas phase transition generating giant photoacoustic transients from these dwarf nanoparticles. Once triggered, the gaseous phase provides ultrasound contrast enhancement. Demonstrated in this work are the design, synthesis, characterization, and testing of Photoacoustic nanoDroplets in phantom and animal studies, and preliminary work into adapting these agents into targeted, drug delivery vehicles for simultaneous detection, diagnosis, and treatment of diseases. / text

Page generated in 0.0408 seconds