• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 203
  • 40
  • 34
  • 22
  • 15
  • 9
  • 8
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 629
  • 339
  • 150
  • 136
  • 136
  • 96
  • 90
  • 76
  • 66
  • 64
  • 63
  • 56
  • 55
  • 47
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Architecting IoT-Enabled Smart Building Testbed

Amanzadeh, Leila 29 October 2018 (has links)
Smart building's benefits range from improving comfort of occupant, increased productivity, reduction in energy consumption and operating costs, lower CO2 emission, to improved life cycle of utilities, efficient operation of building systems, etc. [65]. Hence, modern building owners are turning towards smart buildings. However, the current smart buildings mostly are not capable of achieving the objectives they are designed for and they can improve a lot better [22]. Therefore, a new technology called, Internet of Things, or IoT, is combined with the smart buildings to improve their performance [23]. IoT is the inter-networking of things embedded with electronics, software, sensors, actuators, and network connectivity to collect and exchange data, and things in this definition is anything and everything around us and even ourselves. Using this technology, e.g. a door can be a thing and can sense how many people have passed it's sensor to enter a space and let the lighting system know to prepare appropriate amount of light, or the HVAC (Heating Ventilation Air Conditioning) system to provide desirable temperature. IoT will provide a lot of useful information that before that accessibility to it was impossible, e.g., condition of water pipes in winter, which helps avoiding damages like frozen or broken pipes. However, despite all the benefits, IoT suffers from being vulnerable to cyber attacks. Examples have been provided later in Chapter 1. In this project among building systems, HVAC system is chosen to be automated with a new control method called MPC (Model Predictive Control). This method is fast, very energy efficient and has a lower than 0.001 rate of error for regulating the space temperature to any temperature that the occupants desire according to the results of this project. Furthermore, a PID (Proportional–Integral–Derivative) controller has been designed for the HVAC system that in the exact same cases MPC shows a much better performance. To design controllers for HVAC system and set the temperature to the desired value a method to automate balancing the heat flow should be found, therefore a thermal model of building should be available that using this model, the amount of heat, flowing in and out of a space in the building disregarding the external weather would be known to estimate. To automate the HVAC system using the programming languages like MATLAB, there is a need to convert the thermal model of the building to a mathematical model. This mathematical model is unique for each building depending on how many floors it has, how wide it is, and what materials have been used to construct the building. This process is needs a lot of effort and time even for buildings with 2 floors and 2 rooms on each floor and at the end the engineer might have done it with error. In this project you will see a software that will do the conversion of thermal model of buildings in any size to their mathematical model automatically, which helps improving the HVAC controllers to set temperature to the value occupants desire and avoid errors and time loss which is put both into calculations and troubleshooting. In addition, a test environment has been designed and constructed as a cyber physical system that allows us to test the IoT- enabled control systems before implementing them on real buildings, observe the performance, and decide if the system is satisfying or not. Also, all cyber threats can be explored and the solutions to those attacks can be evaluated. Even for the systems that are already out there, there is an opportunity to be assessed on this testbed and if there is any vulnerability in case of cyber security, solutions would be evaluated and help the existing systems improve. / Master of Science / Buildings function as shelters more than any thing else, and this has allowed humans to use it as a space to store important things like private and important information. Therefore, this space should be safe and secure from any vulnerabilities for occupants and their information. Smart buildings, have made a great difference in increasing the comfort level of occupants, but they haven’t been greatly successful achieving their objectives [50]. Therefore, a new technology called, Internet of Things, or IoT, is combined with the smart buildings to improve their performance [23]. IoT is the inter-networking of things embedded with electronics, software, sensors, actuators, and network connectivity to collect and exchange data, and things in this definition is anything and everything around us and even ourselves. Internet of Things (IoT) has helped improving the smart buildings and getting a considerable amount of energy efficiency [27]. But adding Internet of Things has added a network of things connected to internet, which gives the cyber hackers an opportunity to hack the buildings, and get access to the information stored inside the building or put even occupants lives in danger. Therefore, in this thesis the following items have been contributed: • Designing and programming a novel control system for HVAC system of the buildings (Model Predictive Control): This is a new method to control HVAC system of buildings and in comparison with the methods available in the market, it is the most energy efficient, it is faster, and it has a lower error rate in following the desired temperature of the occupants. • Design and construction of IoT- enabled smart building testbed: Since cyber attacks make buildings vulnerable, the author believes it is better to build a test environment to simulate the buildings and the control methods that are used inside the buildings, and try to evaluate performance of the control methods before implementing them on real buildings. Also, by installing IoT sensors inside the test environment, the engineers can perform some cyber attack tests, and also evaluate the solutions for each attack on the testbed. • Design and program a software to convert thermal model of buildings to mathematical model : In designing a new control method for HVAC system of buildings, the first required information is the thermal model of the buildings. Eventually, there is a need to program. Thus, the thermal model should be converted to a mathematical model. However, there is a heavy manual calculation behind it that is really overwhelming, tiring, with a high possibility of error, and time-consuming even for a very small sized building. Therefore, automating this process in terms of a software that takes the information of thermal model of buildings as an input and giving the output of the mathematical model of building is a considerable achievement.
212

Towfish Design, Simulation and Control

Schuch, Eric Matthew 09 August 2004 (has links)
Sampling small scale ocean turbulence is one of the most important problems in oceanography. The turbulence can be near the noise level of current microscale profiling techniques and these techniques do not provide spatially and temporally dense measurements and can be labor intensive. A 5 beam acoustic Doppler current profiler (VADCP) can more accurately measure three components of fluid velocity in a column. By towing such a device in a sensor platform, called a towfish, one may measure turbulent mixing in a vertical swath of the ocean. If the towfish attitude is not precisely regulated, however, the turbulence measurements can be irreversibly corrupted. A two-part tow that includes a depressor weight between the towing vessel and the towfish can provide some degree of disturbance rejection. Passive devices alone, however, can not meet the performance requirements for measuring ocean turbulence. This thesis presents a design for a two-stage towing system which will be used to measure ocean turbulence. The focus is on the towfish, which includes independently actuated stern planes for pitch and roll disturbance rejection. The thesis also describes design and analysis of an active control system to precisely regulate the pitch and roll attitude of a streamlined towfish. A three dimensional numerical model is presented and a PID controller is developed to provide active attitude stabilization. The effect of random depressor motions on the towfish dynamics is assessed for both the uncontrolled and the feedback-controlled case. The numerical investigation also considers variations in parameters such as tether length and CG location. / Master of Science
213

PID Auto-Tuning and Control System for Heaters in μGC Systems

Gupta, Poonam 31 March 2023 (has links)
Micro gas chromatography (μGC) system is a miniaturized and portable version of the conventional GC system, suitable for various applications such as healthcare and environmental analysis. The process of gas chromatography requires precise temperature control for the micro-fabricated preconcentrators and separation columns used since temperature changes directly affect retention time. Proportional Integral and Derivative (PID) controllers provide reliable temperature control and can be tuned to obtain the desired response. The conventional method of tuning the PID control parameters by trial and error is a tedious process and time-consuming process. This thesis aims to develop a PID auto-tuning and control system for auto-tuning microfabricated heaters in modular μGC systems. The developed system is based on the Ziegler Nichols rule-based PID tuning method for closed-loop systems, which uses the relay response of the micro-heater to calculate the PID tuning parameters. The system also includes an analysis system to verify the performance of the PID-tuned values and a tuning system where the PID values can be further tuned to obtain more precise control for the heaters. The aim of developing this system is to reduce the effective tuning time for heaters while satisfying the control requirements. In this thesis, we discuss the tuning methodology and the implementation of the PID tuning and control system, followed by a performance evaluation of the heaters tuned using the proposed system is discussed. / Master of Science / Gas chromatography (GC) is an established technique used for the qualitative and quantitative analysis of compounds present in a mixture. Micro-gas chromatography (μGC) systems are miniaturized versions of conventional GC systems. They are portable, energy-efficient, and facilitate on-site analysis in real-time, which is suitable for applications such as health care, forensics, and environmental analysis, requiring in-field analysis. GC is based on the principle that components of a gaseous mixture, when passed through a heated column coated with a stationary phase, separate out based on their extent of interaction with the stationary phase. The temperature control needs to be precise since it directly affects the process. PID control is the most common and reliable method for temperature control. It can be tuned to obtain the desired response, which can, however, be a tedious process. This thesis aims to develop a PID auto-tuning and control system for μ-fabricated heaters in μGC systems. As a part of this thesis, a system facilitating faster tuning of PID parameters for a given heater using the Ziegler Nichols closed-loop tuning method is developed. It uses the relay response of the micro-heater to determine the tuning value. The obtained PID values can be evaluated using the analysis system developed as a part of the system and can be further fine-tuned using the provided system to obtain the desired response. As a part of this thesis, we first discuss the development of the PID tuning and control system, after which the performance of the tuned values is evaluated for two micro-heaters.
214

Methodology for Zero-Cost Auto-tuning of Embedded PID Controllers for Actuators: A Study on Proportional Valves in Micro Gas Chromatography Systems

Korada, Divya Tarana 21 June 2024 (has links)
This thesis describes the implementation of zero-cost auto-tuning techniques for embedded Proportional Integral and Derivative (PID) controllers, specifically focusing on their application in the control of proportional valves within Micro Gas Chromatography (uGC) systems. uGC systems are miniaturized versions of conventional GC systems, and require precise temperature, flow and pressure control for the micro-fabricated preconcentrators and micro columns. PID controllers are widely used in process control applications due to their simplicity and effectiveness. The Commercial Off The Shelf (COTS) available controllers are expensive, bulky, need system compatibility and have high lead times. The proposed auto-tuner features simple Python-implemented empirical calculations based on Ziegler Nichols relay-based PID tuning method to determine the optimal PID gains. Leveraging Wi-Fi the system enables tuning for any embedded platform while visualizing transient response through the Graphical User Interface (GUI). The embedded-GUI interface provides a customizable auto-tuning experience extending usage across diverse temperature, pressure and flow regulation applications in environmental analysis. Specifically for uGC systems, the GUI integrates with existing hardware stack using minor software enhancements to enable rapid, automated PID tuning for thermal and flow control applications. The performance is analyzed by evaluating response metrics including overshoot, rise time, and steady-state error. / Master of Science / Commercially available flow and thermal regulators are expensive and bulky. In applications like micro gas chromatography (uGC) systems, these commercial tools to regulate actuator control reduce portability and may require different regulators for different control ranges. To overcome these challenges, we developed an open-source, transparent Proportional-Integral-Derivative (PID) auto-tuner for micro-electromechanical systems (MEMS) actuators in uGC systems. The proposed Python-based Graphical User Interface (GUI) approach leverages simple empirically-driven calculations to determine optimal gains. By interfacing with any embedded system through standard connection like Wi-Fi, the auto-tuner enables interactive, vendor-agnostic tuning while visualizing full transient response. This provides accessible, customizable auto-tuning capabilities to enhance closed-loop PID control across instrumentation and device applications at no or minimal additional hardware cost. In uGC systems, we utilize the same setup for thermal, flow, and pressure control, with additional sensor costs offset by the implementation of multiple closed loops on the same system.Precise temperature and flow control is critical in many applications, such as minimizing fluctuations in analyte retention times in uGC systems. PID control offers reliable closed-loop control for such applications, but tedious manual tuning is required for each system. The proposed auto-tuner presented in this work will greatly simplify PID tuning to improve temperature and flow rate precision in these systems. The performance is analyzed by evaluating response metrics including overshoot, rise time, and steady-state error. This thesis discusses the auto-tuning technique, PID implementation, and experimental performance analysis. Overall, this work presents a novel embedded PID automated methodology for rapid and precise thermal and flow control in uGC and other precision regulation applications. The proposed auto-tuning method provides effective tuning across a wide variety of applications such as motors, temperature and pressure control, and flow regulation systems.
215

Generic Model Control (GMC) in Multistage Flash (MSF) Desalination

Alsadaie, S.M., Mujtaba, Iqbal 02 June 2016 (has links)
Yes / Multistage Flash Desalination (MSF) is currently facing an enormous challenge in cutting of the cost: within the last few years, the MSF experienced a gradual decline in investment compared to other techniques of desalting water and thus, a significant improvement is required to remain attractive for capital investors. Improved process control is a cost effective approach to energy conservation and increased process profitability. In this work, a dynamic model is presented using gPROMS model builder to optimize and control MSF process. The Proportional Integral Derivative Controller (PID) and Generic Model Control (GMC) are used successfully to control the Top Brine Temperature (TBT) and the Brine Level (BL) in the last stage at different times of the year. The objectives of this study are: firstly, to obtain optimum TBT and BL profiles for four different seasons throughout the year by minimizing the Total Seasonal Operating Cost (TSOC); secondly, to track the optimum TBT and BL profiles using PID and GMC controllers with and without the presence of constraints; thirdly, to examine how both types of controllers handle the disturbances which occur in the plant. The results are promising and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system.
216

Modelagem e controle de um trocador de calor feixe tubular. / Modeling and control of a heat exchanger pipe beam type.

Martin, Paulo Alexandre 09 February 2006 (has links)
Este trabalho apresenta todo um projeto de um sistema de supervisão e controle de um trocador de calor, desde os ensaios experimentais para a elaboração de um modelo matemático até a implementação do sistema de controle e supervisão em microcomputador. O sistema implementado consiste de um software didático e um sistema de aquisição de dados que irão realizar a supervisão e controle de um trocador de calor tipo casco e tubos. Neste software didático é possível implementar o controle PID e suas variações PI-D e I-PD além de permitir a implementação do sistema de controle adaptativo estrutura gain scheduling o qual muda os parâmetros de um controle PID de acordo com a mudança da dinâmica do trocador de calor. Como o trocador de calor apresenta um tempo morto em sua dinâmica, então optou-se por adicionar ao software didático um controle com algoritmo preditivo estrutura Preditor de Smith desta forma é possível realizar ensaios com e sem o algoritmo preditivo para uma comparação de resultados. Este sistema de supervisão e controle do trocador de calor poderá ser usado como ferramenta didática para alunos de diversos cursos, onde é possível realizar ensaios de diferentes estruturas de controle para posterior comparação e estudo de seus resultados. Resultados práticos de todas as estruturas de controle que o software implementa são apresentados e comparados neste trabalho. / This work presents thorough a supervision and control system project of a heat exchanger, from the experimental tests for the mathematical model rising to the control system implementation and supervision in a microcomputer. The implemented system consists of didactic software and a data acquisition system that will perform the supervision and control of a heat exchanger shell and tube type. In this didactic software it is possible to implement the PID control and its variations PI-D and I-PD besides allowing the implementation of the adaptive control system gain scheduling structure, which changes the PID control parameters according to the changes of the heat exchanger dynamics. As the heat exchanger presents dead time on its dynamics, it was opted to add to the didactic software a control with Smith Predictor structure predictive algorithm, thus it is possible to perform tests with and without the predictive algorithm for result comparison. This supervision and control system of the heat exchanger will be able to be used as a didactic tool for students from several courses, where it is possible to perform tests with different control structures to further comparison and study of its results. Pratical results of all the control structures that the software implements are presented and compared in this work.
217

Desenvolvimento de um controlador PID para aplicação em uma mesa angular rotativa / Application of a PID controller for a piezoelectric tilt stage

Pinheiro, José Antonio 24 April 2009 (has links)
Trata do desenvolvimento de um controlador Proporcional-Integral-Derivativo (PID) para uma Mesa Angular Rotativa (MAR) destinada à usinagem de ultraprecisão. O sistema de controle tem como objetivo efetuar posicionamento angular de alta resolução e repetibilidade antes e durante a usinagem de ultraprecisão, propiciando fabricar peças complexas através de torneamento. A MAR faz uso de elementos como mancais de flexão, atuadores piezelétricos, juntamente com o sistema de controle PID. A estratégia de controle é baseada na aquisição de dados na plataforma de desenvolvimento LabVIEW®, para gerar curvas tensão de saída do tesatronic versus deslocamento da MAR e no processamento dos sinais adquiridos ao longo do microposicionamento da MAR em tempo real para realimentação de posição. Constatou-se que o sistema suporta deslocamentos da MAR correspondendo a expansão do atuador piezelétrico de até 24 µm com freqüência de acionamento de até 3 Hz. O uso de filtro Chebyshev provocou atraso na resposta e forte instabilidade no sistema. Conclui-se que para a melhora do desempenho do sistema em termos de freqüência pode ser conseguida através do uso de filtro do tipo FIR (Finite Impulse Response). / A Micro Tilt Stage (MTS) was developed in the Precision Engineering Laboratory (University of São Paulo) to be used in commercial diamond turning machines. The MTS has the aim of positioning workpieces angularly with high resolution and repeatability before and during ultraprecision machining. The use of flexural bearings and piezoelectric actuators together with a PID control system provided improved dynamic performance. The control strategy is based on data acquisition using LabView to create standard curves and perform the correction of positioning errors. Experimental tests are performed with displacement of the (MTS), up to 24 µm, with frequency, up to 3 Hz. The use of a Chebyshev filter caused a delay and a strong instability in the system. In conclusion, in order to improve the performance of the system in terms of frequency, the use of a FIR filter (Finite Impulse Response) may be indicated.
218

Obtenção de conjuntos estabilizantes de controladores PID para sistemas com atraso utilizando o teorema de Hermite-Biehler / Obtaining joint stabilizers of controllers PID to systems with delay using the Hermite-Biehler theorem

Silva, Alexandre Marcelo Fernandes da 28 March 2008 (has links)
Os controladores PID são largamente utilizados em processos industriais. Recentemente, novos resultados de projeto de controladores PID foram obtidos para sistemas lineares invariantes no tempo sem atraso. Entretanto, o comportamento de diversas plantas industriais pode ser descrito matematicamente por sistemas lineares invariantes no tempo com atraso. O problema de estabilidade de sistemas lineares invariantes no tempo com atraso envolve encontrar a locação de raízes de funções transcedentais. Neste trabalho, o teorema de Hermite-Biehler é usado para estabelecer resultados para o projeto de controladores PID para uma classe de sistemas lineares com atraso. Usando a propriedade de entrelaçamento em altas freqüências da classe estudada e programação linear obtém-se o conjunto de todos os controladores PID. Até onde se sabe resultados anteriores de síntese de controladores PID envolvem a solução de equações transcendentais. / The PID controller is widely used in industrial processes. Recently, new results on the design of PID controllers for invariant time linear systems without time delays have appeared. However, the dynamic behavior of many industrial plants may be mathematically described by linear time invariant systems with time delays. The problem of stability of linear time invariant systems with time delays involves finding the location of roots of transcendental functions. In this work, the Hermite-Biehler theorem is used to establish results on the design of proportional plus integral plus derivative (PID) controllers for a class of time delay systems. Using the property of interlacing at high frequencies of the class of systems considered and linear programming we obtain the set of all stabilizing PID controllers. As far as we know, previous results on the synthesis of PID controllers rely on the solution of transcendental equations.
219

Automação de um sistema de pulverização para aplicação de agroquímicos a taxa variada usando injeção direta / Automation of a direct injection sprayer system for variable rate application of agrochemicals

Mercaldi, Heitor Vinicius 10 September 2012 (has links)
Neste trabalho, a automação de um sistema de pulverização a taxa variada com injeção direta é apresentado. A automação do sistema de pulverização montado em uma bancada laboratorial estática foi baseado em um controlador programável com capacidade de tempo real. Os sistemas de pulverização com injeção direta possibilitam o uso de diferentes agroquímicos em uma mesma aplicação, e adicionalmente reduzem os impactos toxicológico e ambiental relacionados com o preparo e descarte da mistura de agroquímico e água. A automação deste sistema envolve o desenvolvimento de placas de interface, a modelagem do pulverizador e o controle das vazões. Um ambiente de simulação baseado no LabVIEW permitiu que os códigos fonte e as rotinas desenvolvidas fossem utilizadas diretamente no controlador programável, exigindo pouca ou nenhuma modificação. Para regular a vazão de injeção do agroquímico, que é dada por uma bomba de pistão, é utilizado um controlador proporcional-integral (PI). Já para regular a vazão da mistura de agroquímico e água, que é dada por uma válvula de controle proporcional de três vias, são implementados dois controladores: um controlador proporcional-integral-derivativo (PID) e um controlador adaptativo do tipo PID fuzzy por escalonamento de ganho. O desempenho dos controladores implementados são analisados via os resultados do erro de aplicação e das vazões. / In this work, the automation of a direct injection sprayer system for variable rate application of agrochemicals is presented. The automation of the sprayer system assembled on a laboratory static bench is based on a programmable controller with real time capabilities. Variable rate sprayer with direct injection systems allow multiple agrochemical application and additionally reduces the toxicologic and environmental risks associated with the carrier-agrochemical mix preparation and discard. The automation of this system comprises the development of interface boards, the sprayer modeling and the control of flow rates. Using a simulation environment based on LabVIEW, the developed source code and routines could be implemented directly in the programmable controller, requiring few or no changes. For the injection flow rate, which is set by a piston pump, a proportional-integral (PI) controller is used. And, to regulate the carrier-agrochemical mix flow rate, which is set by a three-way proportional control valve, two controllers are used: a proportional-integral-derivative (PID) controller and a fuzzy gain scheduling of PID controller. The performance of the implemented controllers is analyzed via the flow rates and the application error results.
220

Sistema de controle de atitude para modelo de VLS fixo com 3 graus de liberdade / Attitude control system for fixed SLV model with 3 degree of freedom

Souza, Mateus Moreira de 27 June 2012 (has links)
O sistema de controle por alocação dos pólos com filtro foi utilizado para controlar a atitude de um modelo de veículo lançador de satélites. Com este intuito, foram confeccionados um modelo e uma base de fixação que permite a movimentação nos três graus de liberdade. Utilizando a resposta à entrada degrau em conjunto com um sistema de controle PID obtido de forma empírica para estabilizar o sistema, as características da planta foram identificadas e então o sistema de controle por alocação de pólos foi projetado. Este sistema apresentou uma oscilação em torno da referência com amplitude menor do que 0,5° e tempo de pico para a entrada degrau na ordem de 2,17 segundos. Um segundo controlador PID foi projetado de forma analítica para se obter uma referência, porém apresentou resposta com características inferiores ao controlador por alocação de pólos. Os dois sistemas de controle projetados conseguem manter o modelo estável mesmo quando um dos motores é desligado. / Pole placement control system with filter was implemented to control the attitude of a satellite launch vehicle model. With this purpose, a model and a fixing base with three degrees of freedom was made. Utilizing the system response to step input with PID controller empirically designed to stabilize the system, the model characteristics were identified and the pole placement control system was designed. This system oscillated around the reference with amplitude smaller than 0.5° and peak time around 2.17 seconds. Another PID controller was designed analytically for reference, however the pole placement controller had better response characteristics than the PID controller. Both controllers can stabilize the system even when one engine is shut off.

Page generated in 0.0458 seconds