• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 21
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optical and structural property mapping of soft tissues using spatial frequency domain imaging

Yang, Bin, Ph. D. 17 September 2015 (has links)
Tissue optical properties, absorption, scattering and fluorescence, reveal important information about health, and holds the potential for non-invasive diagnosis and therefore earlier treatment for many diseases. On the other hand, tissue structure determines its function. Studying tissue structural properties helps us better understand structure-function relationship. Optical imaging is an ideal tool to study these tissue properties. However, conventional optical imaging techniques have limitations, such as not being able to quantitatively evaluate tissue absorption and scattering properties and only providing volumetrically averaged quantities with no depth control capability. To better study tissue properties, we integrated spatial frequency domain imaging (SFDI) with conventional reflectance imaging modalities. SFDI is a non-invasive, non-contact wide-field imaging technique which utilizes structured illumination to probe tissues. SFDI imaging is able to accurately quantify tissue optical properties. By adjusting spatial frequency, the imaging depth can be tuned which allows for depth controlled imaging. Especially at high spatial frequency, SFDI reflectance image is more sensitive to tissue scattering property than absorption property. The imaging capability of SFDI allows for studying tissue properties from a whole new perspective. In our study, we developed both benchtop and handheld SFDI imaging systems to accommodate different applications. By evaluating tissue optical properties, we corrected attenuation in fluorescence imaging using an analytical model; and we quantified optical and physical properties of skin diseases. By imaging at high spatial frequency, we demonstrated that absorption in fluorescence imaging can also be reduced because of a reduced imaging depth. This correction can be performed in real-time at 19 frames/second. Furthermore, fibrous structures orientation from the superficial layer can be accurately quantified in a multi-layered sample by limiting imaging depth. Finally, we color rendered SFDI reflectance image at high spatial frequency to reveal structural changes in skin lesions.
12

CHARACTERIZATION OF COLLOIDAL NANOPARTICLE AGGREGATES USING LIGHT SCATTERING TECHNIQUES

Kozan, Mehmet 01 January 2007 (has links)
Light scattering is a powerful characterization tool for determining shape, size, and size distribution of fine particles, as well as complex, irregular structures of their aggregates. Small angle static light scattering and elliptically polarized light scattering techniques produce accurate results and provide real time, non-intrusive, and in-situ observations on prevailing process conditions in three-dimensional systems. As such, they complement conventional characterization tools such as SEM and TEM which have their known disadvantages and limitations. In this study, we provide a thorough light scattering analysis of colloidal tungsten trioxide (WO3) nanoparticles in the shape of irregular nanospheres and cylindrical nanowires, and of the resulting aggregate morphologies. Aggregation characteristics as a function of primary particle geometry, aspect ratio of nanowires, and the change in dispersion stability in various polar solvents without the use of dispersants are monitored over different time scales and are described using the concepts of fractal theory. Using forward scattered intensities, sedimentation rates as a result of electrolyte addition and particle concentration at low solution pH are quantified, in contrast to widely reported visual observations, and are related to the aggregate structure in the dispersed phase. For nanowires of high aspect ratios, when aggregate structures cannot directly be inferred from measurements, an analytical and a quasiexperimental method are used.
13

Nature cohérente et incohérente de la réponse de Second Harmonique dans les nanostructures métalliques d’or et d’argent / Coherent and incoherent nature from second harmonic response in gold and silver metallic nanostructures

Awada, Chawki 05 June 2009 (has links)
Dans ce travail, les propriétés optiques non linéaires de différentes nanostructures métalliques à base d’or et d’argent sont étudiées. En particulier, une attention particulière est portée à la nature cohérente ou incohérente de la réponse. Pour cela, la technique de la Génération du Second Harmonique (SHG) est employée. C’est en effet l’une des méthodes optiques non linéaires les plus simples pour mettre en évidence cette nature cohérente ou incohérente de la réponse. Les échantillons utilisés pour cette mise en évidence sont constitués d’une part par des films diélectriques dopés par des nanoparticules bimétalliques d’alliages du type AuAg de différentes fractions molaires en or pour la réponse incohérente et d’autre part par des réseaux de nanocylindres d’or de différentes tailles disposés selon trois configurations géométriques (carrée, hexagonale et aléatoire) sur un substrat pour la réponse cohérente. La majeure partie du travail est dévolue à l’étude de la propagation et du doublage de fréquence en régime de faisceaux gaussiens et impulsions courtes dans les films diélectriques dopés par des nanoparticules bimétalliques en raison de phénomènes supplémentaires observés simultanément à la conversion de fréquence : absorption et réfraction non linéaire, phase de Gouy... Par la méthode des franges de Maker, les valeurs absolues des composantes de la susceptibilité non linéaire d’ordre 2 de ces films sont mesurées puis les valeurs absolues de l’hyperpolarisabilité quadratique des nanoparticules sont estimées sur la base d’un modèle de réponse incohérente. Enfin, une étude préliminaire sur la génération de continuum de lumière est présentée. La nature cohérente de la réponse SHG est recherchée dans les réseaux de nanocylindres. Nous montrons que l’origine de la réponse est associée à l’existence de défauts de surface dans ces nanostructures et donc conserve un caractère incohérent. Toutefois, nous avons pu mettre en évidence des effets associés à la taille des nanocylindres et à l’organisation des nanocylindres sur le substrat, ce dernier effet étant attaché à un caractère cohérent de la réponse / In this work, the non linear optical properties of different silver and gold metallic nanostructures are studied. In particular, a special attention is concerning the coherent or incoherent nature of the response. For that purpose, the Second Harmonic Generation (SHG) technique is used. It is indeed one of the simplest non linear optical methods to underline the coherent or incoherent nature of the response. Samples used for this reason are constituted on the first hand by dielectric films doped by bimetallic nanoparticles of clusters of the type AuAg of various gold molar fractions for the incoherent responses and on the other hand by arrays of gold nanocylinders of various sizes arranged according to three geometrical configurations (square, hexagonal and random) on a substrate for the coherent response. The major part of the work is devoted to the study of the propagation and the second harmonic frequency in regime of Gaussian beams and short pulses in dielectric films doped by bimetallic nanoparticles because of supplementary phenomena observed simultaneously in the conversion of frequency: non linear absorption and refraction, Gouy phase... By the method of the fringes of Maker, the absolute values of the coefficient of the second order non linear susceptibility of these films are measured then the absolute values of the quadratic hyperpolarizability of nanoparticles are estimated on the basis of a model of incoherent responses. Finally, a preliminary study on the light continuum generation is presented. The coherent nature of the SHG response is studied in the nanocylinders arrays. We show that the origin of the response is associated with the existence of the surface defects in these nanostructures and thus have an incoherent character. However, we were able to put in evidence the effects associated with the size of nanocylinders and with the organization of nanocylinders on the substrate, this last effect being attached to a coherent character of the response
14

Analýza metod pro hodnocení submikrostruktury buněčné stěny dřeva / Method´s analysis of submicroscopy structure of wood cell wall determination

Martinek, Radomír January 2018 (has links)
The content of this study is focused on the influence of the structure of wood at microscopic and submicroscopic level on its mechanical properties. The wood cell wall consists of several layers, the dominant layer being layer S2, which occupies up to 80 % of the total thickness of the wood cell wall. Unique feature of this layer is that cellulose microfibrils placed in this layer are highly aligned and spirally wound around the cell axis. The inclination of these microfibrils is called microfibril angle (MFA) and is the key feature that affects mechanical properties of wood and its shrinkage. In theoretical part of this thesis methods for measuring microfibril angle are described. A method for measuring mechanical properties of the wood cell wall called nanoindentation is discussed in detail. In the practical part of this thesis, microfibril angle is measured by means of polarized light microscopy and mechanical properties of wood cell wall is determined by means of nanoindentation.
15

Design biolampy / Design of Biolamp

Straková, Kateřina January 2018 (has links)
This master thesis deals with the design of biolamp. First, the product undergoes historical, technical and designer analysis. Based on the findings of these analyzes is to propose a new version of this device meets the ergonomic, technical, aesthetic and social aspects.
16

Měření vlastností polarizovaného světla na výstupu vlnového multiplexu a jeho optimalizace pro použití v senzorové technice / Measurement of polarized light properties on the dense wavelength division multiplexing in optical-fiber sensor systems

Bučko, Kristián January 2021 (has links)
The polarization of light is one of the most remarkable phenomena in nature and has led to many discoveries in the optical-telecommunications sphere. The master's thesis describes the basic knowledge about polarized light, which includes the types of light polarization, the issue of Poincaré sphere, polarizing ellipse, etc. Emphasis is also placed on the measurement of optical power, where the analysis of various types of photodetectors and also polarimeters was performed. In the practical part of this work, the design of the workplace itself is described in the diagrams. Also, all devices in the workplace are analyzed and subsequently demonstrated measurement in several scenarios. The final chapter is a discussion with the measured results and graphical dependencies, comparison and analysis of results.
17

Detection of condom lubricants and starches in the presence of biologicals by diffuse reflectance infrared fourier transform spectroscopy and polarized light microscopy

Moody, Hannah Leigh January 2013 (has links)
Condoms have been used in sexual assaults as a means of preventing the transmission of biological fluids. Current sexual assault evidence collection kit processing protocols do not regularly take advantage of the information that can be gathered by examining residues left by condoms during intercourse. A biphasic liquid-liquid extraction technique was developed to separate polar and non-polar condom residues, which had been collected on cotton tipped swabs. This research involved the examination of twenty condom brands by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Five brands were selected to examine the consistency of this technique when the lubricants were exposed to body and storage temperature conditions for various times and in the presence of oral, vaginal, and blood samples. Additionally, starches collected from the condoms under each of the above conditions were examined. Although all lubricants were identifiable using this IR technique, the nonoxynol-9 (spermicide) containing samples produced spectra which were not identical to those produced by nonoxynol-9 standards. Although there was a decrease in the percent transmittance within IR spectra as the time between the collection and the extraction of the swabs increased, the condom residues of interest remained identifiable at all time points examined. The use of vaginal and oral swabs in the collection caused a negligible amount of background interference, which could be eliminated through spectral subtraction of the swab.
18

Optical properties of CdTe/Cd<sub>1-x</sub>Zn<sub>x</sub>Te strained-layer single quantum wells

Li, Tiesheng January 1993 (has links)
No description available.
19

Demonstration of Optical Microscopy and Image Processing to Classify Respirable Coal Mine Dust Particles

Santa, Nestor January 2021 (has links)
Inhalation of respirable coal mine dust (RCMD) can lead to chronic lung diseases, including coal worker’s pneumoconiosis (CWP) and more severe forms such as progressive massive fibrosis. After the Federal Coal Mine Health and Safety Act was passed in 1969, limits on exposure to respirable dust were set, and the prevalence of CWP abruptly decreased. However, during the last two decades, a resurgence of the disease has been reported. Many authors have argued that the increasing numbers might be related to mining practices, including the extraction of thinner coal seams, characteristics of the mineral deposits, and more powerful cutting machines. Dust particles in coal mines are usually associated with three main sources: Coal particles are produced when the coal seam is being actively extracted. Silica and silicates are generated while cutting the rock strata surrounding the coal or during roof-bolting activities. Finally, rock dust application is the primary source of highly pure carbonates. Timely information about dust composition would allow the identification of potential dust sources and pursue efforts to control dust exposure efficiently. However, this information needs to be provided promptly since dust levels are dynamically changing through the shift. Currently, monitoring technologies such as the continuous personal dust monitor allow real-time measurements, but they are limited to total dust concentration and provide no information about dust composition. More recently, the National Institute for Occupational Safety and Health (NIOSH) has been developing an end-of-shift silica monitor. Still, technologies that offer information on dust composition in a semi-continuous manner are needed. In this work, a new monitoring concept is explored that has the potential to provide near real time data on RCMD constituents. The possible use of a portable optical microscopy (OM) combined with image processing techniques is explored as the basis for a novel RCDM monitoring device. The use of OM in different fields and the rapid development of automated image analysis reveals a clear opportunity that has not been yet exploited for mine dust monitoring applications. This thesis research consisted of two primary studies. The first was an analysis of lab-generated respirable dust samples containing the main mineralogical classes in RCMD (i.e., coal, silica, kaolinite as a proxy for silicate minerals, and a real rock dust product). Samples were imaged using a polarizing microscope and analyzed using an image processing routine to identify and classify particles based on optical characteristics. Specifically, birefringence of particles was exploited to separate coal particles form mineral particles. This is an exciting result since even such a basic fractionation of RCMD would be valuable to track changing conditions at the mine production face and enable rapid decision making. The second study was conducted to explore subclassification of the mineral fraction. A model was built to explore multiple particle features, including particle size, shape, color, texture, and optical properties. However, a simple stepwise method that uses birefringence for separating coal particles first and then classifying silica particles proved most effective. One particular challenge to the silica classification was determined to be the particle loading density. Future work to further enhance the output of the algorithm and next steps were depicted. This thesis research demonstrated that OM and image processing can be used to separate mineral and coal fractions. Subclassification of silica and other minerals using optical properties such as birefringence of particles alone was successful, but showed less accuracy. A robust sampling method that accounts for particle loading density and a more complex model with additional differentiating features might enhance the results. This approach should be considered as a potential candidate for the development of new RCMD monitoring technologies. This tool could enable better tracking of dust conditions and thus better decision-making regarding ventilation, dust controls, and operator position to reduce exposure hazards. / M.S. / Inhalation of fine particles in underground coal environments can lead to chronic lung diseases, such as coal worker’s pneumoconiosis or progressive massive fibrosis (PMF), which is the most severe form of disease. During the last two decades, the rates of reported cases of PMF in underground coal miners have more than doubled. Many authors have suggested different reasons to explain this trend, including the extraction of thinner coal deposits, mining techniques, changes in mineral content, and the use of high-powered cutting equipment. However, detailed information of specific dust constituents and monitoring the variability of dust concentrations during work shifts are needed to determine possible dust sources and comprehend the more recent changing disease patterns. A dust-monitoring system that provides accurate and timely data on specific respirable coal mine dust (RCMD) constituents would enable the deployment of effective control strategies to mitigate exposure to respirable hazards. Optical microscopy (OM) has been used for a long time to analyze and identify dust particles. More recent advances in portable microscopy have allowed the microscope analysis to be implemented in the field. On the other hand, automated image processing techniques are rapidly progressing and powerful imaging hardware has become a reality in handy small devices. OM and image processing technologies offer a path for near real-time applications that have not been explored for RCMD monitoring yet. In this work, a novel monitoring concept is explored using OM and image processing to classify RCMD particles. Images from dust samples captured with a polarizing microscope were used to build a classification model based on optical properties. The method herein described showed outstanding accuracy for separating coal and mineral fractions. Additionally, the Identification of silica particles in the mineral fraction was investigated and has proved more challenging. A particular finding suggests that particle loading density in the images plays an important role in classification accuracy.
20

Elliptically polarized light for depth resolved diffuse reflectance imaging in biological tissues / Utilisation de la lumière polarisée elliptiquement pour une résolution en profondeur de l'imagerie des tissus biologiques en réflectance diffuse

Sridhar, Susmita 05 October 2016 (has links)
L’imagerie de filtrage en polarisation est une technique populaire largement utilisée en optique pour le biomédical pour le sondage des tissus superficiels, pour le sondage de volumes plus profonds, mais aussi pour l’examen sélectif de volumes sub-surfaciques. Du fait de l’effet de ’mémoire de polarisation’ de la lumière polarisée, l’imagerie de filtrage en polarisation elliptique est sensible á des épaisseurs de tissus différentes, depuis la surface, accessible avec la polarisation linéaire, jusqu’á une épaisseur critique accessible par la polarisation circulaire. Nous nous concentrons sur des méthodes utilisant des combinaisons de polarisations elliptiques afin de sélectionner la portion de lumière ayant maintenu son état de polarisation et éliminer le fond pour un meilleur contraste avec de plus une information sur la profondeur. Avec ce type de filtrage, il est possible d’accéder á des profondeurs de tissus biologiques bien définies selon l’ellipticité de polarisation. De plus, ces travaux ont permis d’étendre la méthode á la spectroscopie pour quantifier la concentration en chromophores á une profondeur spécifique. Les méthodes développées ont été validées in vivo á l’aide d’expériences réalisées sur des anomalies de la peau et aussi sur le cortex exposé d’un rat anesthésié. Enfin, une étude préliminaire a été réalisée pour examiner la possibilité d’étendre la méthode á l’imagerie de 'speckle'. Des tests préliminaires réalises sur fantômes montrent l’influence de l’ellipticité de polarisation sur la formation et le comportement du speckle, ce qui offre la possibilité d’accéder á des informations sur le flux sanguin á des profondeurs spécifiques dans les tissus. / Polarization gating imaging is a popular and widely used imaging technique in biomedical optics to sense tissues, deeper volumes, and also selectively probe sub-superficial volumes. Due to the ‘polarization memory’ effect of polarized light, elliptical polarization gating allows access to tissue layers between those of accessible by linear or circular polarizations. As opposed to the conventional linearly polarized illumination, we focus on polarization gating methods that combine the use of elliptically polarized light to select polarization-maintaining photons and eliminate the background while providing superior contrast and depth information. With gating, it has also become possible to access user-defined depths (dependent on optical properties) in biological tissues with the use of images at different ellipticities. Furthermore, this investigation allowed the application of polarization gating in spectroscopy to selectively quantify the concentration of tissue chromophores at user-desired depths. Polarization gating methods have been validated and demonstrated with in vivo experiments on abnormalities of human skin (nevus, burn scar) and also on the exposed cortex of an anaesthetized rat. Finally, as a first step towards the use of coherent illumination, adding the concept of polarimetry to laser-speckle imaging was demonstrated. Preliminary tests on phantoms (solid and liquid) suggested evidence of the influence of polarization ellipticity on the formation and behaviour of speckles, which could pave the way for more insight in the study of blood flow in tissues.

Page generated in 0.0265 seconds