• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 12
  • 11
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 48
  • 38
  • 35
  • 24
  • 24
  • 24
  • 21
  • 19
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Automobile-generated air pollution

Muneer, T. (Tariq) January 2011 (has links)
Digitized by Kansas Correctional Industries
42

Procuring industrial pollution control : the South Australian case, 1836-1975

Jordan, Matthew. January 2001 (has links) (PDF)
Bibliography: leaves 253-280.
43

Procuring industrial pollution control : the South Australian case, 1836-1975 / Matthew Jordan.

Jordan, Matthew January 2001 (has links)
Bibliography: leaves 253-280. / viii, 280 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of History, 2002?
44

Performance Study on the Field Treatment of VOCs Emitted from a Solvent Plant by Biofilter Packed with Fern Chips

Tseng, Chia-Ling 04 August 2010 (has links)
Organic solvent production plants emit waste gases containing volatile organic compounds (VOCs) which are usually harmful to the environments and public healths. Plant managers are obligated to control the VOC emission to meet regulations at reasonable costs. A solvent plant located in southern Taiwan emits VOC-containing gas streams from some distillation columns and storage vessels with a total ventilation gas flow rate of 2.6-3.6 m3/min which contains VOCs with concentrations of less than 1,000 mg C/m3. Due to a concern of plant¡¦s safety, the plant managers constructed a full-scale biofilter for eliminating a part of the VOCs and the associated odors in the waste gas. This study aimed to investigate the effects of operation parameters such as EBRT (empty bed retention time) of the gas through the biofiltration media and organic loading to the media on the VOC removal efficiency. The biofilter is constructed of RC (reinforced concrete) with outer dimensions of 8.45 mL ¡Ñ 3.30 mW ¡Ñ 3.00 mH. The filter was also instrumented with inverters for control of speed of induced fans, and with thermometers, hygrometers, and wind speed meters. Fern chips with a total packing volume of 36 m3 was used as the biofiltration media. After inoculation with suitable microorganisms, the waste gas was introduced to the filter for VOC elimination. Nutrients (urea, milk, and a phosphate salt) and water were supplemented to the media on a daily basis. The investigation period is July, 2008 to May, 2010. In the period, THC (total hydrocarbon) concentrations for the influent and effluent gases to and from the reactor were daily measured. In addition, on a weekly basis, compositions of the VOCs in gas samples were detected by a gas chromatography equipped with a flame ionization dector (FID). On the same time basis, pH, COD (chemical oxygen demand), SS (suspended solids) in a sample of the trickled liquid from the media was analyzed. Media pH and moisture content were also analyzed for understanding the environmental conditions around the microorganisms for the VOC degradation. Results indicated that the media was in conditions of pH = 4.5-7.0, moisture = 11-61 % in the experimental phase. Trickled liquid had low COD and SS contents which can be easily treated by the existing wastewater unit in the plant, or be recycled to the media. Avarage THC, NMHC (nonmethane hydrocarbon), and VOCs were 71, 73, and 79%, respectively, with gas EBRTs of 4.2-6.3 min. With media pH of 4-5 and moisture contents 51-57%, over 90% of the influent VOCs coulb be eliminated. However, nearly dried media (moisture around 10%) had VOC removal efficiencies of lower than 30%. Nutrition tests indicate that the VOC removal efficiency was nearly proportional to milk supplementation rate. Removal of ethnaol and acetic could easily be removed with an efficiency of over 97% while 2-pentane was only 74%. Odor intensities of the treated gas could be controlled to <1,000 (dilutions to threshold) according to 3 test data.
45

Study on the Treatment of Airborne Isopropyl Alcohol (IPA) by Biofilter Packed with Fern Chips

Jiang, Chin-wen 10 August 2005 (has links)
Abstract Biological processes have been proven to be economical and effective for control of VOCs with concentration of <1,000 mg C/m3. This study armed to develop a biofilter packed only with fern chips for the removal of airborne isopropyl alcohol (IPA). A three-stage down-flow biofilter (2.2 m in height and 0.4 m¡Ñ0.4 m in cross-sectional area) was constructed for the performance test. The first stage serviced as a humidifier for the incoming gas and the following two stages, both packed with fern chips with a packing space of 0.30 m ¡Ñ 0.40 m ¡Ñ0.40 m, as trickling bed biofilters for the VOC removal. Air with a nearly constant IPA concentration of 100 mg/Am3 (@ an average temperature of 34 oC) and a flow rate in the range of 100-400 L/min was fed to the reactor in Phase I test. The flow rate gave an empty bed retention time (EBRT) in the range of 12-48 s for the gas flowing through the two bed media. Solutions of urea-N, phosphate-P, and milk powder were supplied daily to the fern chips for the microbial nutrition in Phase I experiment which lasted for 26 days. Following the Phase, Phase II test operated with a constant EBRT of 12 s and without any nutrient supplementation for 30 days. Experimental results show that with an influent gas temperature of 29-40oC (average 34 oC) and relative humidity of 43-93% (average 73%), with a proper moistening of the bed media, the effluent gas could achieved a temperature of 26-35oC (average 29 oC) and a relative humidity of 98%. The proceeding medium experienced a greater moisture variation (12-68%, average 38%) than that (65-82%, average 72%) of the following one. The former and the latter media had pH in the range of 6.11-7.78 (average 6.77) and 6.13-7.36 (average 6.59), respectively. With no additional nutrient supplementation for 30 days, approximately 98% of the influent IPA of 100 mg/m3 could be removed at the EBRT of as short as 12 s which corresponded to a loading of 60 g IPA/m3.h.
46

Performance study on the dust removal from ritual money incinerator vent gases by a spray chamber

Li, Meng-lin 05 July 2007 (has links)
A 20 kg/hr ritual-money combustion chamber and a 20 Am3/min (@35oC) wet scrubber were setup for performance tests on the removal of TSP (total solid particulates) from the combustion flue gas. Test results indicate that (1) TSP in the flue gas ranged from 93-157 (avg. 126) and 127-182 (avg. 157) mg/m3 (@35oC) at gas drawing rates (QG) of 13.1 and 26.3 m3/min (@35oC), respectively, and ritual-money combustion rates of 14.2-16.3 (avg. 15.3) kg/hr. The lower gas drawing rate gave lower TSP concentrations in the flue gas. TSP removal efficacy varied linearly with the liquid scrubbing rate (QL) and a 70% TSP removal was achieved at a QL of 60 L/min which is equivalent to a scrubbing-liquid intensity of 4.0 L/m2.s over the scrubber cross section. (2) Visual smoke intensity in the exit of the scrubber chimney was not apparent with a combustion rate of 16 kg/hr, scrubbing intensity of 4.0 L/m2.s, and gas drawing rates of 13.1 and 26.3 m3/min. (3) Scrubbing water consumptions of 1.2-2.4 L were estimated for a combustion of 1 kg ritual money. (4) Pertinent design parameters of a scrubber for 70% TSP removal from the flue gas are (a) liquid/gas ratio (QL/QG) = 3-6 L liquid/(m3 gas @30oC); (b) superficial gas velocity over the scrubber cross section (UG) = 0.6-1.2 m/s; (c) superficial liquid velocity over the scrubber cross section (UL) = 0.004 m/s; and (d) a gas-liquid contacting length of 0.70 m. Results also show that the combustion exit gas odor concentration (D/T, dilution times to threshold) could be removed from 309 to 232 by the scrubber at operation conditions of QG = 13.1 and 26.3 m3/min, and QL = 60 L/min. Results also show that parts of CO2, CO, and NO could be removed by the scrubbing liquor, and there was no significant removal for NO2 and SO2 by the scrubber. By spraying KClO3 on a homemade wood pulp ritual money at a dosage of 3 wt.%, it shows that it burned more rapidly and with more smoke emission than a non-sprayed sample. Experiments also show that FeCl3 (15mg/L) was a satisfactory coagulant for enhancing the coagulation and sedimentation of the suspended solids (SS) in the wasted scrubbing liquor (known as Gray water). By the coagulant, SS in the Gray water with a pH of 7.0 could be removed from 100 to < 10 mg/L. XRD (X-Ray Diffraction) examination of a bottom ash sample indicates that the ash has an elemental composition of O, Na, Al, and Si of 49.9, 11.8, 23.8, and 15.1%, respectively. SEM (Scanning Electron Microscope) analysis indicates that the collected fly ash and the bottom one have particle sizes of 20-110 (mostly 45-60 nm) and 50-300 (average 250) nm, respectively.
47

Analysis of Air Flow Pattern and Pollution Control in the Mini-Environment of Injection Molding Clean Room

Hong, Jia-Hong 17 June 2003 (has links)
High technology industries have stringent on clean room environment. Traditional ballroom type clean room can¡¦t meet the requirement in many cases. The uni-directional laminar ballroom type cleanroom is can¡¦t fulfill such requirement. The adoption of Mini-Environment technology is becoming the mainstream of the environment control technology for high technology industries process. It is the goal of this project to simulate and design the air flow pattern, in using the current injection machine as a model, to achieve the cleanliness of class 1,000 ¡V 10,000. There are four major steps in achieving this goal, Namely: 1¡BThe dynamic 3D CFD simulation of the flow pattern of the clean bench. 2¡BThe evaluation of the pollution source and its impact on the overall cleanliness 3¡BThe basic design of the class 1,000 cleanroom for this machine 4¡BThe modification necessary to achieve this goal through design iterations. The results of this research are useful in the understanding of the flow characteristics in a mini-environment. The buffer zone of laminar flow was found to be effective to avoid cross contamination with the outside environment during door opening. The height of the processing opening of the mini-environment is found to be an important factor on the flow turbulent intensity and particle concentration. Concentration due to an operator can also be reduced by this buffer zone. The numerical techniques developed can also be used as numerical models in future studied.
48

Activity-based life-cycle assessments in design and management

Emblemsvåg, Jan 08 1900 (has links)
No description available.
49

Analysis of the sensitivity of photochemical airshed modeling to grid size and spatial and temporal distributions aof mobile source emissions

Lakshminarayanan, Anand 08 1900 (has links)
No description available.
50

Evaluation of nitrogen oxide emission factors for heavy-duty diesel trucks based on ambient air measurements

Garretson, Charles C. 08 1900 (has links)
No description available.

Page generated in 0.1964 seconds