• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 42
  • 30
  • 21
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 347
  • 347
  • 113
  • 80
  • 74
  • 71
  • 71
  • 46
  • 44
  • 43
  • 42
  • 40
  • 39
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Imperfections and self testing in prepare-and-measure quantum key distribution

Woodhead, Erik 10 December 2014 (has links)
Quantum key distribution (QKD) protocols are intended to allow cryptographic keys to be generated and distributed in way that is provably secure based on inherent limitations, such as the no-cloning principle, imposed by quantum mechanics. This unique advantage compared with classical cryptography comes with an added difficulty: key bits in QKD protocols are encoded in analogue quantum states and their preparation is consequently subject to the usual imprecisions inevitable in any real world experiment. The negative impact of such imprecisions is illustrated for the BB84 QKD protocol. Following this, the main part of this thesis is concerned with the incorporation of such imprecisions in security proofs of the BB84 and two semi-device-independent protocols against the class of collective attacks. On a technical level, by contrast with the vast majority of security proofs developed since the turn of the century, in which recasting the protocol into an equivalent entanglement-based form features heavily in the analysis, the main results obtained here are approached directly from the prepare-and-measure perspective and in particular the connection with the no-cloning theorem and an early security proof by Fuchs et al. against the class of individual attacks is emphasised.<p><p>This thesis also summarises, as an appendix, a separate project which introduces and defines a hierarchy of polytopes intermediate between the local and no-signalling polytopes from the field of Bell nonlocality. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
322

Quantum information with optical continuous variables: nonlocality, entanglement, and error correction / Information quantique avec variables continues optiques: nonlocalité, intrication, et correction d'erreur

Niset, Julien 03 October 2008 (has links)
L'objectif de ce travail de recherche est l'étude des posibilités offertes par une nouvelle approche de l'information quantique basée sur des variables quantiques continues. Lorsque ces variables continues sont portées par le champs éléctromagnétique, un grand nombre de protocoles d'information quantique peuvent être implémentés à l'aide de lasers et d'éléments d'optique linéaire standards. Cette simplicité expérimentale rend cette approche très intéressantes d'un point de vue pratique, en particulier pour le développement des futurs réseaux de communications quantiques.<p><p>Le travail peut se diviser en deux parties complémentaires. Dans la première partie, plus fondamentale, la relation complexe qui existe entre l'intrication et la nonlocalité de la mécanique quantique est étudiée sur base des variables optiques continues. Ces deux ressources étant essentielles pour l'information quantique, il est nécessaire de bien les comprendre et de bien les caractériser. Dans la seconde partie, orientée vers des applications concrètes, le problème de la correction d'erreur à variables continues est étudié. Pouvoir transmettre et manipuler l'information sans erreurs est nécessaire au bon développemnent de l'information quantique, mais, en pratique, les erreurs sont inévitables. Les codes correcteurs d'erreurs permettent de détecter et corriger ces erreures de manière efficace.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
323

Photonic Integration with III-V Semiconductor Technologies

Paul, Tuhin 13 April 2022 (has links)
This dissertation documents works on two projects, which are broadly related to photonic integration using III-V semiconductor platform for fiber-based optical communication. Our principal project aims to demonstrate continuous variable quantum key distribution (CV-QKD) with InP-based photonic integrated cir cuit at the 1550 nanometer of optical wavelength. CV QKD protocols, in which the key is encoded in the quadrature variables of light, has generated immense interest over the years because of its compatibility with the existing telecom infrastructure. In this thesis, we have proposed a design of a photonic inte grated circuit potentially capable of realizing this protocol with coherent states of light. From the practical perspective, we have basically designed an optical transmitter and an optical receiver capable of carrying out coherent communi cation via the optical fiber. Initially, we established a mathematical model of the transceiver system based on the optical transfer matrix of the foundry spe cific (Fraunhofer Heinrich Hertz Institute-Germany) building blocks. We have shown that our chip design is versatile in the sense that it can support multiple modulation schemes. Based on the mathematical model, we estimated the link budget to assess the feasibility of on-chip implementation of our protocol. Then we ran a circuit level simulation using the process design kit provided by our foundry to put our analysis on a better footing. The encouraging result from this step prompted us to generate the mask layout for our transceiver chips, which we eventually submitted to the foundry. The other project in the thesis grew out of a collaboration with one of our industry partners. The goal of the project is to enhance the performance of a distributed feedback laser emitting at the 1310 nanometer of optical wavelength by optimizing its design. To that end, we first derived the expression for transmission and reflection spectrum for the laser cavity. Those expressions contained parameters which needed to be obtained from the transverse and the longitudinal mode analysis of the laser. We performed the transverse mode analysis and the longitudinal mode analysis with commercially available numerical solvers. Those mode profiles critically depend on the grating physical parameters. Therefore by tweaking grating dimensions one can control the transmission characteristics of the laser.
324

Design and Construction of a Multi-Port Beamsplitter Based on Few-Mode-Fibers

Spegel-Lexne, Daniel January 2022 (has links)
A MBS (Multi-port beamsplitter) for higher dimensional quantum communication has been designed and constructed and the theory and method for this is presented in this thesis. It uses optical fibers in a heterogeneous structure with a single-mode fiber spliced to a multi-mode fiber and then spliced to a few-mode fiber. Three MBS:s were constructed and tested to see if superpositions between spatial modes could be generated. One with 5.65cm multi-mode fiber, one with 9cm of multi-mode fiber and one with just the single-mode fiber spliced to the few-mode fiber. The optical modes that where focused on for the superposition were the linear polarized LP01, LP11a and LP11b modes. Simulations of superpositions between these modes were performed and experiments were done to see if these simulations could be realised. The shapes of these superpositions could be seen with a camera and the stability of the different modal powers and the stability of the phases between the modes where also tested. The last experiment tested the tunability of the modes by finding their maximum and minimum output power for each individual mode. The results of these experiments show that the stability of power and relative phases are high and testing of the tunability shows that the 9cm MBS is the most tunable, the 5.65cm MBS the second best and the SMF-FMF MBS the worst. Even though the shapes of the superpositions, the stability and tunability shows very positive results, the conclusion is that more experiments are required in order to identify the superpositions and for this to be used in a quantum communication system. / En Multi-port stråldelare (MSD) för kvantkommunikation med hjälp av rumsliga optiska moder har blivit designad och konstruerad. Teorin, metoden och resultatet av detta arbete presenteras i denna uppsats. Denna konstruktion använder sig av optiska fiber i heterogena strukturer med en single-mode fiber svetsad till en multi-mode fiber som i sin tur är svetsad till en few-mode fiber. Tre stycken MSD blev konstruerade och testade för att se om superpositioner mellan rumsliga moder kunde bli genererade, en med 5.65cm multi-mode fiber, en med 9cm multi-mode fiber och en med bara en single-mode fiber svetsad till en few-mode fiber. De moder som fokuserades på för superpositionerna var de linjärpolariserade moderna LP01, LP11a och LP11b. Superpositionerna simulerades och sen genomfördes experiment för att se ifall de kunde bli genererade. Formerna av dessa superpositioner kunde hittas och synliggöras med en kamera. Stabiliteten av modernas energi och stabiliteten av faserna mellan moderna testades också. Det sista experimentet som gjordes testade justerbarheten av moderna genom att hitta den minimala samt maximala intensiteten för varje mod. Experimenten visar att intensiteterna och de relativa faserna har hög stabilitet för alla konstruerade MSD, men i justerbarhets experimentet visar det sig att 9cm MSD:en presterar bäst, 5.65cm MSD:en presterar näst bäst och SMF-FMF strukturen presterar sämst. Trots att formerna av superpositionerna kunde hittas för alla tre konstruktioner, och att testen i stabiliteten visar goda resultat så krävs mer experiment för att identifiera superpositionerna mellan moderna och ifall denna konstruktion går att implementera i ett kvantkommunikationssystem.
325

Spectral Multiplexing and Information Processing for Quantum Networks

Navin Bhartoor Lingaraju (10723737) 29 April 2021 (has links)
Modern fiber-optic networks leverage massive parallelization of communications channels in the spectral domain, as well as low-noise recovery of optical signals, to achieve high rates of information transfer. However, quantum information imposes additional constraints on optical transport networks – the no-cloning theorem forbids use of signal regeneration and many network protocols are premised on operations like Bell state measurements that prize spectral indistinguishability. Consequently, a key challenge for quantum networks is identifying a path to high-rate and high-fidelity quantum state transport.<div><br></div><div>To bridge this gap between the capabilities of classical and quantum networks, we developed techniques that harness spectral multiplexing of quantum channels, as well as that support frequency encoding. In relation to the former, we demonstrated reconfigurable connectivity over arbitrary subgraphs in a multi-user quantum network. In particular, through flexible provisioning of the pair source bandwidth, we adjusted the rate at which entanglement was distributed over any user-to-user link. To facilitate networking protocols compatible with both spectral multiplexing and frequency encoding, we synthesized a Bell state analyzer based on mixing outcomes that populate different spectral modes, in contrast to conventional approaches that are based on mixing outcomes that populate different spatial paths. This advance breaks the tradeoff between the fidelity of remote entanglement and the spectral distinguishability of photons participating in a joint measurement.<br></div><div><br></div><div>Finally, we take steps toward field deployment by developing photonic integrated circuits to migrate the aforementioned functionality to a chip-scale platform while also achieving the low loss transmission and high-fidelity operation needed for practical quantum networks.<br></div>
326

Novel Analysis Framework Using Quantum Optomechanical Readouts For Direct Detection Of Dark Matter

Ashwin Nagarajan (10702782) 06 May 2021 (has links)
With the increase in speculation about the nature of our universe, there has been a growing need to find the truth about Dark Matter. Recent research shows that the Planck-Mass range could be a well-motivated space to probe for the detection of Dark Matter through gravitational coupling. This thesis dives into the possibility of doing the same in two parts. The first part lays out the analysis framework that would sense such an interaction, while the second part outlines a prototype experiment that when scaled up using quantum optomechanical sensors would serve as the skeleton to perform the analysis with.
327

Growth, characterization and implementation of semiconductor sources of highly entangled photons

Keil, Robert 19 November 2020 (has links)
Sources of single and polarization-entangled photons are an essential component in a variety of potential quantum information applications. Suitable emitters need to generate photons deterministically and at fast repetition rates, with highest degrees of single-photon purity, entanglement and indistinguishability. Semiconductor quantum dots are among the leading candidates for this task, offering entangled-photon pair emission on-demand, challenging current state-of-the-art sources based on the probabilistic spontaneous parametric down-conversion (SPDC). Unfortunately, their susceptibility to perturbations from the solid-state environment significantly affects the photon coherence and entanglement degree. Furthermore, most quantum dot types suffer from poor wavelength control and emitter yield, due to a random growth process. This thesis investigates the emerging family of GaAs/AlGaAs quantum dots obtained by in-situ Al droplet etching and nanohole infilling. Particular focus is laid on the interplay of growth parameters, quantum dot morphology and optical properties. An unprecedented emission wavelength control with distributions as narrow as ± 1 nm is achieved, using four independent growth parameters: The GaAs infilling amount, the deposition sequence, the migration time and the Al concentration in the barrier material. This enables the generation of large emitter ensembles tailored to match the optical transitions of rubidium, a leading quantum memory candidate. The photon coherence is enhanced by an optimized As flux during the growth process using the GaAs surface reconstruction. With these improvements, we demonstrate for the first time two-photon interference from separate, frequency-stabilized quantum dots using a rubidium-based Faraday filter as frequency reference. Two-photon resonant excitation of the biexciton state is employed for the coherent and deterministic generation of photon pairs with negligible multi-photon emission probability. The GaAs/AlGaAs quantum dots exhibit a very small average fine structure of (4.8 ±2.4) µeV and short average radiative lifetimes of 200 ps, enabling entanglement fidelities up to F = 0.94, which are among the highest reported for any entangled-photon source to date. Furthermore, almost all fabricated emitters on a single wafer exhibit fidelities beyond the classical limit - without any post-growth tuning. By embedding the quantum dots into a broadband-optical antenna we enhance the photon collection efficiency significantly without impairing the high degrees of entanglement. Thus, for the first time, quantum dots are able to compete with SPDC sources, paving the way towards the realization of a semiconductor-based quantum repeater - among many other key enabling quantum photonic elements.:Contents List of Figures ix List of Tables xiii 1 Introduction 1 1.1 Researchmotivation ...................1 1.1.1 Structure of this thesis ................. 3 1.2 Applications based on entangled photons ............. 4 1.2.1 Quantum bits ...................4 1.2.2 Quantum key distribution ................ 5 1.2.3 Qubit teleportation .................. 7 1.2.4 Teleportation of entanglement ..............9 1.2.5 The photonic quantumrepeater .............. 10 1.3 Generation of entangled photons ...............12 1.3.1 The ideal entangled-photon source ............. 12 1.3.2 Non-deterministic photon sources ............. 13 1.3.3 Deterministic photon sources ..............14 2 Fundamentals 17 2.1 Semiconductor quantumdots ................17 2.1.1 Introduction to semiconductor quantum dots .......... 17 2.1.2 Formation of confined excitonic states ............ 19 2.1.3 Energy hierarchy of excitonic states ............. 21 2.2 Entangled photons from semiconductor quantumdots ......... 22 2.2.1 The concept of entanglement ............... 22 2.2.2 Polarization-entangled photon pairs fromthe biexciton radiative decay .. 23 2.2.3 Origin and impact of the exciton fine structure splitting ....... 25 2.2.4 Impact of spin-scattering, dephasing and background photons on the degree of entanglement ..................29 2.3 Quantum dot entangled-photon sources - State of the art ........32 2.4 Exciton radiative lifetime .................. 34 2.4.1 The concept of radiative lifetime .............. 34 2.4.2 Measurement of the radiative lifetime ............35 2.5 Single-photon purity ...................37 2.5.1 Photon number distributions ............... 37 2.5.2 Second-order correlation function .............38 2.5.3 Measurement of the second-order correlation function ....... 40 2.6 Measurement of entanglement ................42 2.6.1 Quantum state tomography ...............43 2.7 Photon coherence and spectral linewidth .............46 2.7.1 The concept of coherence ................ 46 2.7.2 First-order coherence ................. 46 2.7.3 Relation between coherence and spectral linewidth ........ 49 2.7.4 homogeneous vs. inhomogeneous broadening in single quantumdots ..50 2.8 Photon indistinguishability .................51 2.8.1 Hong-Ou-Mandel interference ..............51 2.8.2 Hong-Ou-Mandel interference between photons fromseparate sources .. 52 2.8.3 The Bell state measurement with linear optics .......... 53 3 Experimentalmethods 55 3.1 The GaAs and AlAs material system ............... 55 3.2 Molecular beam epitaxy ..................56 3.2.1 The Concept of molecular beam epitaxy ...........56 3.2.2 Layout and components of the III-V Omicron MBE ........58 3.2.3 Growth parameters .................. 59 3.2.4 Reflection high-energy electron diffraction (RHEED) ........ 60 3.2.5 Growth rate determination using RHEED oscillations .......61 3.3 Optical setups .....................63 4 Results 67 4.1 Growth of GaAs/AlGaAs quantum dots by in-situ Al droplet etching .....68 4.1.1 Motivation for the study of GaAs / AlGaAs quantum dots ......68 4.1.2 GaAs / AlGaAs quantum dot growth process ..........69 4.1.3 Interplay between growth parameters, quantumdot morphology and optical properties ................. 71 4.1.4 Nanohole morphology and quantumdot formation ........ 73 4.1.5 Optical characterization ................75 4.1.6 Deterministic wavelength control .............77 4.1.7 Photon coherence and radiative lifetime ...........84 4.1.8 Decoherence processes in semiconductor quantum dots ......86 4.1.9 Chamber conditioning and growth process optimization ......87 4.1.10 Arsenic flux calibration using the GaAs surface reconstruction ..... 88 4.1.11 Enhanced photon coherence after growth process adjustments ....92 4.2 Two-photon interference from frequency-stabilized GaAs/AlGaAs quantum dots .................94 4.2.1 Frequency tuning of semiconductor quantumdots ........95 4.2.2 Experimental setup .................. 95 4.2.3 Optical characterization of the separate GaAs/AlGaAs quantum dots ... 98 4.2.4 Faraday anomalous dispersion optical filter and frequency feedback ... 99 4.2.5 Two-photon interference between remote, frequency-stabilized quantum dots 100 4.3 Solid-state ensemble of highly entangled photon sources at rubidiumatomic transitions ........................102 4.3.1 Fine-structure splitting ................103 4.3.2 Resonant excitation of the biexciton state ...........105 4.3.3 Single photon purity and radiative lifetime ........... 107 4.3.4 Radiative lifetime of GaAs/AlGaAs quantumdots - comparison to other quantumdot types ...................108 4.3.5 Degree of entanglement ................109 4.3.6 Highly-efficient extraction of the obtained entangled photons ..... 116 5 Conclusions 119 5.1 Summary ....................... 119 5.2 Discussion and outlook ..................122 Bibliography 127 Publications and scientific presentations 150 Acknowledgments 154 Selbstständigkeitserklärung 157 Curriculum vitae 157
328

Development of high quality silicon nitride chips for integrated nonlinear photonics / Développement de circuits photoniques intégrés de haute qualité en nitrure de silicium pour l'optique non-linéaire

El Dirani, Houssein 07 October 2019 (has links)
La montée exponentielle du trafic de données liée au développement de l’interconnexion entre objets et personnes sur la toile nécessite de nouvelles technologies. Au cours de la dernière décennie, les peignes de fréquences optiques ont révolutionné le secteur des télécommunications, ouvrant la voie à une transmission de données à un débit de données auparavant inaccessible. Mis à part le domaine des télécommunications, les peignes de fréquences optiques ont été avantageusement exploités dans d’autres domaines comme la détection optique, la détection chimique, les horloges optiques… L'efficacité du phénomène de mélange à quatre ondes, qui sous-tend la génération des peignes de fréquences, dépend de manière significative des pertes par propagation dans les guides d’ondes optiques et, par conséquent, de la rugosité de ces derniers. De plus, l'absorption intrinsèque du matériau réduit l'efficacité des phénomènes non linéaires tout en contribuant à l’atténuation du signal lumineux dans le milieu optique de propagation. Grâce à la maturité des procédés de fabrication dits CMOS, la rugosité peut être réduite en optimisant la gravure, tandis que l’absorption peut être réduite par des traitements thermiques. L'utilisation d'un matériau CMOS permet donc une fabrication à faible coût et la co-intégration avec d’autres dispositifs optoélectroniques sur la même puce. Le nitrure de silicium sur isolant est une plateforme prometteuse pour la génération de peignes de fréquences optiques grâce à la faible absorption à deux photons dans ce matériau par rapport au silicium cristallin. Cependant, le nitrure présente une absorption dans la bande des télécommunications relié à la présence des liens moléculaires N-H. Tandis que des recuits à haute température ont été utilisés pour réduire le contenu en hydrogène du film et démontrer avec succès la génération de peignes de fréquence, ces procédés rendent la co-intégration monolithique de ces dispositifs en nitrure de silicium avec une optoélectronique à base de silicium très difficile, réduisant ainsi considérablement sa compatibilité avec les autres matériaux CMOS. Dans cette thèse, nous décrivons la conception, la fabrication et les caractérisations de circuits photoniques non-linéaires en nitrure de silicium sans recuit. En particulier, nous avons mis au point un procédé de fabrication de films de Si3N4 d'une épaisseur de 740 nm, sans utilisation de recuit et avec une maitrise de la gestion des contraintes typiquement associées à ce type de matériau pour l’optique non linéaire. Cette approche offre une compatibilité de fabrication technologique avec la photonique sur silicium. Des preuves expérimentales montrent que les micro-résonateurs utilisant de tels films de nitrure de silicium sans recuit sont capables de générer un peigne de fréquence s'étendant sur 1300-2100 nm via une oscillation paramétrique optique basée sur du mélange à quatre ondes. En allant encore plus loin, nous présentons également les travaux d’optimisation technologique portant sur des microrésonateurs en nitrure de silicium recuits avec des guides d’onde à fort confinement modal, qui nous ont permis d’atteindre des pertes de propagation record. Ces résultats ont été rendus possible grâce à une optimisation fine des étapes de gravure des guides d’onde ainsi qu’à l'utilisation de traitements thermiques-chimiques efficaces. Cette nouvelle approche nous a permis de démontrer par ailleurs des sources de peignes de fréquences intégrées sur puce utilisant des résonateurs en nitrure de silicium couplés par aboutement à un laser III-V DFB utilisé comme une pompe. Cette preuve de concept prouve la validité de notre plateforme de circuits photoniques non-linéaires en Si3N4 pour la réalisation de peignes de fréquences optiques ultra-compacts à faible consommation. / The data traffic need for ultra-high definition videos as well as for the mobile data continues to grow. Within the last decade, optical frequency combs have revolutionized the telecommunications field and paved the way for groundbreaking data transmission demonstrations at previously unattainable data rates. Beside the telecommunications field, optical frequency combs brought benefits also for many other applications such as precision spectroscopy, chemical and bio sensing, optical clocks, and quantum optics. The efficiency of the four-wave mixing phenomenon from which the optical frequency comb arises critically depends on the propagation losses and consequently on the device roughness induced by the lithography and the etching processes. In addition, the bulk material absorption reduces the efficiency of the nonlinear phenomena. By using state-of-the-art complementary metal oxide semiconductor processes, the roughness can be reduced thanks to the maturity of the manufacturing, while the material bulk absorption can be reduced by thermal treatments. In addition, using a CMOS material enables a low-cost fabrication and the co-integration with electronic devices into the same chip. Silicon-nitride-on-insulator is an attractive CMOS-compatible platform for optical frequency comb generation in the telecommunication band because of the low two-photon absorption of silicon nitride when compared with crystalline silicon. However, the as deposited silicon nitride has a hydrogen related absorption in the telecommunication band. Although high-temperature annealing has been traditionally used to reduce the hydrogen content and successfully demonstrate silicon nitride-based frequency combs, this approach made the co-integration with silicon-based optoelectronics elusive, thus reducing dramatically its effective complementary metal oxide semiconductor compatibility. In this thesis, we report on the fabrication and test of annealing-free silicon nitride nonlinear photonic circuits. In particular, we have developed a process to fabricate low-loss, annealing-free and crack–free Si3N4 740-nm-thick films for Kerr-based nonlinear photonics, featuring a full process compatibility with front-end silicon photonics. Experimental evidence shows that micro-resonators using such annealing-free silicon nitride films are able to generate a frequency comb spanning 1300-2100 nm via optical parametrical oscillation based on four-wave mixing. In addition, we present the further optimized technological process related to annealed silicon nitride optical devices using high-confinement waveguides, allowing us to achieve record-low losses. This was enabled via a carefully tailored patterning etching process and an annealing treatment particularly efficient due to the already low hydrogen content in our as-deposited silicon nitride. Such improved Si3N4 platform allowed us to demonstrate on-chip integrated Kerr frequency comb sources using silicon nitride resonators that were butt-coupled to a III-V DFB laser used as a pump source. This proof of concept proves the validity of our approach for realizing fully packaged compact optical frequency combs.
329

Quantum physics inspired optical effects in evanescently coupled waveguides

Thompson, Clinton Edward January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The tight-binding model that has been used for many years in condensed matter physics, due to its analytic and numerical tractability, has recently been used to describe light propagating through an array of evanescently coupled waveguides. This dissertation presents analytic and numerical simulation results of light propagating in a waveguide array. The first result presented is that photonic transport can be achieved in an array where the propagation constant is linearly increasing across the array. For an input at the center waveguide, the breathing modes of the system are observed, while for a phase displaced, asymmetric input, phase-controlled photonic transport is predicted. For an array with a waveguide-dependent, parity-symmetric coupling constant, the wave packet dynamics are predicted to be tunable. In addition to modifying the propagation constant, the coupling between waveguides can also be modified, and the quantum correlations are sensitive to the form of the tunneling function. In addition to modifying the waveguide array parameters in a structured manner, they can be randomized as to mimic the insertion of impurities during the fabrication process. When the refractive indices are randomized and real, the amount of light that localizes to the initial waveguide is found to be dependent on the initial waveguide when the waveguide coupling is non-uniform. In addition, when the variance of the refractive indices is small, light localizes in the initial waveguide as well as the parity-symmetric waveguide. In addition to real valued disorder, complex valued disorder can be introduced into the array through the imaginary component of the refractive index. It is shown that the two-particle correlation function is qualitatively similar to the case when the waveguide coupling is real and random, as both cases preserve the symmetry of the eigenvalues. Lastly, different input fields have been used to investigate the quantum statistical aspects of Anderson localization. It is found that the fluctuations in the output intensity are enhanced and the entropy of the system is reduced when disorder is present in the waveguides.
330

DIPOLE-DIPOLE INTERACTIONS IN ORDERED AND DISORDERED NANOPHOTONIC MEDIA

Thrinadha Ashwin Kumar Boddeti (16497417) 06 July 2023 (has links)
<p>Dipole-dipole interactions are ubiquitous fundamental physical phenomena that govern physical effects such as Casimir Forces, van der Waals forces, collective Lamb shifts, cooperative decay, and resonance energy transfer. These interactions are associated with real and virtual photon exchange between the interacting emitters. Such interactions are crucial in realizing quantum memories, novel super-radiant light sources, and light-harvesting devices. Owing to this, the control and modification of dipole-dipole interactions have been a longstanding theme. The electromagnetic environment plays a crucial role in enhancing the range and strength of the interactions. This work focuses on modifying the nanophotonic environment near interacting emitters to enhance dipole-dipole interactions instead of spontaneous emission. To this end, we focus on engineering the nanophotonic environment to enhance the strength and range of dipole-dipole interactions between an ensemble of emitters. We explore ordered and disordered nanophotonic structures. We experimentally demonstrate long-range dipole-dipole interactions mediated by surface lattice resonances in a periodic plasmonic nanoparticle lattice. Further, the modified electromagnetic environment reduces the apparent dimensionality of the interacting system compared to non-resonant in-homogeneous and homogeneous environments. We also develop a spectral domain inverse design technique for the accelerated discovery of disordered metamaterials with unique spectral features. </p> <p>Further, we explore the novel regimes of light localization at near-zero-index in such disordered media. The disordered near-zero-index medium reveals enhanced localization and near-field chirality. This work paves the way to engineer the electromagnetic nanophotonic environment to realize enhanced long-range dipole-dipole interactions.</p>

Page generated in 0.0343 seconds