• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 2
  • Tagged with
  • 19
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ramification des revêtements inséparables en caractéristique p>0. / Ramification theory for inseparable coverings

Zalamansky, Gabriel 02 July 2015 (has links)
Dans cette thèse, on introduit la notion de revêtement potentiellement inséparable et on se propose de développer une théorie de la ramification pour ces derniers. Le langage utilisé est celui des schémas en groupoïdes. Après avoir établi quelques résultats préliminaires au chapitre 1, on prouve au chapitre 2 un théorème de quotient d'un schéma en groupoïdes par un sous-groupoïde. Au chapitre 3, on utilise ces résultats pour entreprendre l'étude générale du formalisme des revêtements inséparables. Enfin, au chapitre 4, on spécialise au cas des revêtements sous un schéma en groupes diagonalisable et on étudie en détail la structure de ces derniers. En particulier, on exprime le lieu Gorenstein de ces morphismes en fonction des constantes de structure du revêtement et on prouve dans ce cadre une formule analogue à la formule de Riemann-Hurwitz des revêtements ramifiés classiques. / In this thesis, we introduce the notion of inseparable coverings and we try to develop a ramification theory for such objects. We make use of the groupoid scheme formalism. In section 1, we establish preliminary results on scheme epimorphisms. We use these results in the next section to prove a quotient theorem for groupoid schemes.Then in section 3 we introduce the general formalism of inseparable coverings.Finally, in the last section we consider in greater details inseparable coverings given by the action of a diagonalizable group scheme. We compute the Gorenstein locus of these morphisms and we prove a formula analogous to the classical Riemann-Hurwitz formula.
12

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.
13

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.
14

Arakelov inequalities and semistable families of curves uniformized by the unit ball / Inégalités d'Arakelov et familles semistable de courbes uniformisées par la boule

Damjanovic, Nikola 14 June 2018 (has links)
L'objet principal de cette thèse est de démontrer une inégalité d'Arakelov qui consiste à borner le degré d'un sous-faisceau inversible de l'image directe d'un faisceau relatif pluricanonique d'une famille semi-stable de courbes. Un problème naturel qui apparaît est la caractérisation des familles pour lesquelles sont satisfaites le cas d'égalité dans l'inégalité d'Arakelov, i.e. le cas d'égalité d'Arakelov. Peu d'exemples de telles familles sont connus. Dans cette thèse nous en proposons plusieurs en prouvant que le faisceau relatif bicanonique d'une famille semi-stable de courbes uniformisée par la boule unité et dont toutes les fibres singulières sont totalement géodésiques contient un sous-faisceau inversible qui satisfait l'égalité d'Arakelov. / The main object of study in this thesis is an Arakelov inequality which bounds the degree of an invertible subsheaf of the direct image of the pluricanonical relative sheaf of a semistable family of curves. A natural problem that arises is the characterization of those families for which the equality is satisfied in that Arakelov inequality, i.e. the case of Arakelov equality. Few examples of such families are known. In this thesis we provide some examples by proving that the direct image of the bicanonical relative sheaf of a semistable family of curves uniformized by the unit ball, all whose singular fibers are totally geodesic, contains an invertible subsheaf which satisfies Arakelov equality.
15

[en] CONTINUED FRACTIONS: ERGODIC AND APPROXIMATION PROPERTIES / [pt] FRAÇÕES CONTÍNUAS: PROPRIEDADES ERGÓDICAS E DE APROXIMAÇÃO

DANIELLE DE REZENDE JORGE 26 July 2006 (has links)
[pt] Neste trabalho apresentaremos a teoria de frações contínuas enfatizando a interação entre a teoria de números (expansões de números, aproximações diofantinas e boas aproximações) e a teoria ergódica. Estudaremos a transformação de Gauss e construiremos uma medida ergódica desta transformação. Usando o Teorema Ergódico de Birkhoff obteremos resultados sobre a expansão em frações contínuas de quase todo número real em [0,1). Obteremos propriedades sobre a aproximação de números reais por racionais, sobre a frequência com que aparecem determinados números na expansão em frações contínuas, etc. Estudaremos também o shift de Bernolli e sua relação com a transformação de Gauss. Finalmente, calcularemos a entropia desta transformação. / [en] We study the theory of continued fractions emphasizing the interaction between theory of numbers (expansion of numbers, diophantine approximations, best approximations) and ergodic theory. We study the Gauss transformation and construct its ergodic measure. Using the Birkhoff Ergodic Theorem we obtain results about the expansion in continued fractions of almost every real number in [0, 1). We obtain properties about the approximation of real numbers by rational ones, the frequency of digits in the expansion by continued fractions, etc. We also study the Bernoulli shift and its relation with the Gauss map. Finally, we calculate the entropy of such a transformation
16

Group Actions and Divisors on Tropical Curves

Kutler, Max B. 01 May 2011 (has links)
Tropical geometry is algebraic geometry over the tropical semiring, or min-plus algebra. In this thesis, I discuss the basic geometry of plane tropical curves. By introducing the notion of abstract tropical curves, I am able to pass to a more abstract metric-topological setting. In this setting, I discuss divisors on tropical curves. I begin a study of $G$-invariant divisors and divisor classes.
17

Espaço de moduli das configurações de desargues

Dantas, Divane Aparecida de Moraes 08 March 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-08T15:28:34Z No. of bitstreams: 1 divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T13:29:55Z (GMT) No. of bitstreams: 1 divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5) / Made available in DSpace on 2016-07-13T13:29:55Z (GMT). No. of bitstreams: 1 divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5) Previous issue date: 2012-03-08 / O principal objetivo do trabalho é estudar os Espaços de Moduli das Configurações de Desargues, e este estudo é baseado no artigo (AVRITZER; LANGE, 2002). Uma configuração de 10 pontos e 10 retas, chamada uma configuração 103,obtidas do clássico teorema de Desargues, é chamada uma configuração de Desargues. Muitos espaços de moduli, senão todos, são obtidos algebricamente através das variedades algébricas de quociente, por isso estudamos um pouco de Teoria Geométrica dos Invariantes, ações de grupos algébricos em variedades algébricas e mostramos que existe o quociente categórico de uma variedade algébrica X por um grupo finito G e quando ele é o espaço e moduli grosso. Além disso mostramos que quando a variedade algébrica é afim (resp. quase projetiva) o quociente categórico é uma variedade algébrica afim (resp. quase projetiva). Finalmente, provamos que o quociente categórico(MD,p) de ˇP3 pelo grupo finito S5 é o espaço de moduli grosso para as configurações de Desargues. / The main aim of this work is to study the moduli space of Desargues configurations and it was based in (AVRITZER; LANGE, 2002). A configurations of 10 points and 10 line of the classic Desargues Theorem is called a Desargues configuration. Many moduli spaces, if not all, are obtained algebraically through the quotient of algebraic varieties. So we have studied a little about Geometric Invariant Theory and actions of algebraic group on varieties. We have showed that there exist the categorical quotient of a algebraic variety X by a finite algebraic group G and that it is a coarse moduli space. Moreover, we have showed that if X is a affine (resp. quasi-projective) the categorical quotient is an affine (resp. quasi-projective) variety Finally, we proved that the categorical quotient (MD,p) of the ˇP3 by the algebraic group finite S5 is the moduli space coarse for the Desargues configurations.
18

Entropie minimale des espaces localement symétriques / Minimal entropy for locally symmetric spaces

Merlin, Louis 09 July 2014 (has links)
Nous donnons dans cette thèse une preuve du problème de l’entropie volumique minimale dans les quotients compacts de H2_H2. Une conjecture de Gromov et Katok prétend en effet que, sur un espace localement symétrique (M; g0), la métrique de plus petite entropie volumique parmi les métriques de volume fixé est la métrique g0. Le texte se veut relativement abordable. C’est pourquoi nous avons intégré un premier chapitre qui contient une bonne partie du matériel qui sera utilisé par la suite. Puis nous passons en revue les preuves des différents cas du problème déjà traités. Le cas des quotients compacts de H2_H2 n’était pas connu avant ce travail ; nous en détaillons minutieusement la preuve. Notre démarche consiste à faire fonctionner la méthode de calibration imaginée dans [BCG95]. Nous présentons aussi les principales applications qui découlent de la preuve de la conjecture de Gromov et Katok. Nous concluons par une discussion heuristique qui explique les enjeux du problème que nous étudions. / In this thesis we give an overview of the volume entropy rigidity problem. A conjecture by Gromov and Katok states that, on a locally symmetric space (M; g0), the symmetric metric g0 has minimal volume entropy among metrices with the same total volume. The text is self-contained, assuming a basic knowledge in differential geometry. Therefore we discuss in the first chapter some background material used in the sequel. The case of compact quotients of H2 _ H2 was unknown before this work ; we give a fully detailled proof. The key-point is to build a calibrating form as in [BCG95]. As a by-product, we present some applications provided by the proof of the volume entropy rigidity conjecture. We conclude by an informal section explaining the motivations of the problem to a non-mathematical reader.
19

Parabolic Cataland

Mühle, Henri 15 October 2021 (has links)
In the last few decades, combinatorial families exhibiting noncrossing or cluster phenomena have proven useful in understanding and connecting mathematical objects arising in seemingly unrelated branches of mathematics and theoretical physics. These phenomena can be modeled in the context of Coxeter groups and play an important role in algebraic combinatorics. In finite type, such families are enumerated by generalized Catalan numbers. In this thesis, we consider the extension of this theory to parabolic quotients of Coxeter groups. We outline the history, present the basic definitions and constructions, and provide a number of conjectures and research challenges arising in this context. We then solve these questions in linear type A and exhibit surprising connections of this theory to certain Hopf algebras and to the theory of diagonal harmonics. We end this thesis by proposing related directions for future research.:Chapter 0. Prologue Noncrossing partitions Triangulations Stack-sortable permutations Dyck paths Chapter 1. Preliminaries 1.1. Posets and lattices 1.1.1. A notion of order 1.1.2. Diagrams and labelings 1.1.3. Duality and multichains 1.1.4. Zeta polynomial and Möbius function 1.1.5. Lattices 1.1.6. Distributivity 1.1.7. Semidistributivity 1.1.8. Trimness 1.1.9. Congruence-uniformity 1.1.10. The core label order 1.2. Coxeter groups 1.2.1. Coxeter systems 1.2.2. The geometric representation 1.2.3. Ordering a Coxeter group 1.2.4. Orienting a Coxeter group Chapter 2. Cataland 2.1. Catalan numbers 2.2. Aligned elements 2.2.1. Cambrian lattices 2.3. Noncrossing partitions 2.4. Clusters 2.5. Nonnesting partitions 2.5.1. v-Tamari lattices 2.6. Chapoton Triangles Chapter 3. Parabolic Cataland: Origins 3.1. Parabolic quotients of Coxeter groups 3.2. Parabolic aligned elements 3.3. Parabolic noncrossing partitions 3.4. Parabolic clusters 3.5. Parabolic nonnesting partitions 3.6. Parabolic Chapoton triangles Chapter 4. Parabolic Cataland: Linear type A 4.1. Definitions 4.1.1. Parabolic quotients of the symmetric group 4.1.2. The longest α-permutation 4.1.3. The root poset of S_α and α-Dyck paths 4.1.4. c-clusters for S_α 4.1.5. c-aligned elements for S_α 4.1.6. c-noncrossing partitions for S_α 4.1.7. α-trees 4.2. Bijections 4.2.1. Noncrossing α-partitions and (α, 231)-avoiding permutations 4.2.2. Noncrossing α-partitions and α-Dyck paths 4.2.3. α-trees and (α, 231)-avoiding permutations 4.2.4. α-trees and noncrossing α-partitions 4.2.5. α-trees and α-Dyck paths 4.3. Posets 4.3.1. The weak order on S_α(231) 4.3.2. The rotation order on Dyck(α) 4.3.3. The core label order of Tam(α) 4.4. Chapoton triangles 4.5. Applications 4.5.1. A Hopf algebra on pipe dreams 4.5.2. A zeta map from diagonal harmonics Chapter 5. Epilogue 5.1. Arbitrary type A 5.2. Linear type B 5.3. (α, m)-Tamari lattices 5.4. Parabolic multiclusters Chapter A. Data A.1. Parabolic Catalan numbers in rank 3 A.2. Parabolic Catalan numbers in rank 4 A.3. Answers to Research Challenge 3.3.4 in rank 4 / Kombinatorische Familien, die nichtkreuzende oder Cluster-Phänomene aufweisen, haben sich in den letzten Jahrzehnten als wichtiges Werkzeug für das Verständnis und die Verbindung mathematischer Objekte aus scheinbar unverbundenen Teilgebieten der Mathematik und der theoretischen Physik erwiesen. Diese Phänomene können im Zusammenhang mit Coxeter-Gruppen modelliert werden, und spielen eine wichtige Rolle in der algebraischen Kombinatorik. Im endlichen Fall werden derartige kombinatorische Familien von verallgemeinerten Catalanzahlen abgezählt. In dieser Schrift betrachten wir eine Erweiterung dieser Theorie auf parabolische Quotienten von Coxeter-Gruppen. Wir stellen die historische Entwicklung und die grundlegenden Definitionen und Konstruktionen dar und präsentieren eine Reihe von Vermutungen und Forschungsfragen, die in diesem Zusammenhang entstehen. Anschließend lösen wir diese Fragen im sogenannten 'linearen Typ A' und decken überraschende Zusammenhänge dieser Theorie zu bestimmten Hopf-Algebren und zur Theorie der diagonal-harmonischen Polynome auf. Am Ende dieser Schrift schlagen wir weiterführende Forschungsrichtungen vor.:Chapter 0. Prologue Noncrossing partitions Triangulations Stack-sortable permutations Dyck paths Chapter 1. Preliminaries 1.1. Posets and lattices 1.1.1. A notion of order 1.1.2. Diagrams and labelings 1.1.3. Duality and multichains 1.1.4. Zeta polynomial and Möbius function 1.1.5. Lattices 1.1.6. Distributivity 1.1.7. Semidistributivity 1.1.8. Trimness 1.1.9. Congruence-uniformity 1.1.10. The core label order 1.2. Coxeter groups 1.2.1. Coxeter systems 1.2.2. The geometric representation 1.2.3. Ordering a Coxeter group 1.2.4. Orienting a Coxeter group Chapter 2. Cataland 2.1. Catalan numbers 2.2. Aligned elements 2.2.1. Cambrian lattices 2.3. Noncrossing partitions 2.4. Clusters 2.5. Nonnesting partitions 2.5.1. v-Tamari lattices 2.6. Chapoton Triangles Chapter 3. Parabolic Cataland: Origins 3.1. Parabolic quotients of Coxeter groups 3.2. Parabolic aligned elements 3.3. Parabolic noncrossing partitions 3.4. Parabolic clusters 3.5. Parabolic nonnesting partitions 3.6. Parabolic Chapoton triangles Chapter 4. Parabolic Cataland: Linear type A 4.1. Definitions 4.1.1. Parabolic quotients of the symmetric group 4.1.2. The longest α-permutation 4.1.3. The root poset of S_α and α-Dyck paths 4.1.4. c-clusters for S_α 4.1.5. c-aligned elements for S_α 4.1.6. c-noncrossing partitions for S_α 4.1.7. α-trees 4.2. Bijections 4.2.1. Noncrossing α-partitions and (α, 231)-avoiding permutations 4.2.2. Noncrossing α-partitions and α-Dyck paths 4.2.3. α-trees and (α, 231)-avoiding permutations 4.2.4. α-trees and noncrossing α-partitions 4.2.5. α-trees and α-Dyck paths 4.3. Posets 4.3.1. The weak order on S_α(231) 4.3.2. The rotation order on Dyck(α) 4.3.3. The core label order of Tam(α) 4.4. Chapoton triangles 4.5. Applications 4.5.1. A Hopf algebra on pipe dreams 4.5.2. A zeta map from diagonal harmonics Chapter 5. Epilogue 5.1. Arbitrary type A 5.2. Linear type B 5.3. (α, m)-Tamari lattices 5.4. Parabolic multiclusters Chapter A. Data A.1. Parabolic Catalan numbers in rank 3 A.2. Parabolic Catalan numbers in rank 4 A.3. Answers to Research Challenge 3.3.4 in rank 4

Page generated in 0.097 seconds