• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 36
  • 13
  • 8
  • 6
  • 6
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 236
  • 236
  • 236
  • 70
  • 47
  • 42
  • 40
  • 36
  • 36
  • 34
  • 31
  • 29
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Data Distribution Service for Industrial Automation

Yang, Jinsong January 2012 (has links)
In industrial automation systems, there is usually large volume of data which needs to be delivered to right places at the right time. In addition, large number of nodes in the automation systems are usually distributed which increases the complexity that there needs to be more point-to-point Ethernet-connections in the network. Hence, it is necessary to apply data-centric design and reduce the connection complexity. Data Distributed Service for Real-Time Systems (DDS) is a data-centric middleware specification adopted by Object Management Group (OMG). It uses the Real-Time Publish-Subscribe protocol as its wiring protocol and targets for mission- and business-critical systems. The IEC 61499 Standard defines an open architecture for the next generation of distributed control and automation systems. This thesis presents the structure and key features of DDS and builds a model of real-time distributed system based on the IEC 61499 Standard. Then a performance evaluation of the DDS communication based on this model is carried out. The traditional socket-based communication is also evaluated to act as a reference for the DDS communication. The results of the evaluation mostly show that DDS is considered as a good solution to reduce the complexity of the Ethernet connections in distributed systems and can be applied to some classes of industrial automation systems.
92

Simulation of Safety-Critical Systems Specified in AADL

Sheytanov, Boyan January 2012 (has links)
Safety-critical software intensive systems are used in a lot of industries nowadays. Examples ofthese are in automotive and aircraft industry, medicine, and autonomous systems. Fault in suchsystems can lead to severe damage and/or loss of human lives. Therefore fault-tolerance should beconsidered at all stages of the system development, starting from the analysis and design.Different languages and tools have been developed for that purpose across the years. One of these isthe Architecture Analysis and Design Language (AADL) – a modeling language used to describethe architecture of a software system. It consists of textual and graphical descriptions of three typesof components – software, execution platform and composite.In this work we implement a prototype of an AADL simulator in Java that enables us to examine thepossible dynamic executions of an AADL specification. This allows us to verify the correctness ofan AADL specification based on the behavior it shows. The simulator would expect an AADLspecification of a software system as an input and simulate the dynamic execution of that system.Before implementing the simulator, we introduce the problem area - safety-critical systems andAADL. Since AADL is used primarily in the automotive and aircraft industries, we have chosen todescribe a simplified flight control system for a plane. It should give the reader an initialunderstanding of the language without going into unnecessary detail about rarely used features.Part of the simulator is a compiler that reads the AADL specification, validates it and transforms itto a Java model. We take a look at the individual steps needed for that, with focus on parsing theinput. Therefore we review the different kinds of algorithms used for parsing and explore how theywork.We also make a detailed literature review of previous works in the area of AADL modeltransformations. Finally, we describe the analysis, design and implementation of the simulator andexamine a case study to test the prototype.
93

Evaluation of Real-Time databases in a control-system setting

Coronado Romero, Marcos Jose January 2010 (has links)
This thesis is related to the knowledge area of real-time systems and real-time databases. The increasing complexity of the systems, specifically the embedded systems, and the need of store and share the information they use leads to the need of new technologies. For this reason a need of real-time database management system has emerged to satisfy the new requirements. Several commercial database systems claim to be real-time, but this technology is not consolidated enough. The thesis will perform an evaluation of those databases mainly in predictability terms since predictability is necessary for the correct execution of hard real-time systems. In order to complete the evaluation, a real-time database application has been implemented. This application implements two commercial databases, namely Mimer and eXtremeDB, and a monitor application which is responsible for displaying all the relevant database behavior’s information at runtime. A comparative studying of both databases has been carried out in order to determine how predictable these databases are. Parameters such as response time, CPU time consumption, etc has been studied. Finally, it can be concluded that both databases are predictable to a certain level. On one hand Mimer has an estimation of the worst case response time around 12 µs and CPU overload of 36%, and the fluctuation along the transactions is nearly negligible. On the other hand, eXtreme has an estimation of the worst-case response time around 18 µs and CPU overload of 41%, and the fluctuation along the transactions are rather bigger than the Mimer’s. However, it can be concluded that both databases provide real-time transactions and, thus, they are able to be implemented in real-time systems.
94

Deriving ECA-rules from timed-automata specifications.

Ericsson, Ann-Marie January 2002 (has links)
Real-time systems are required to answer to external stimuli within a specified time-period. For this to be possible, the systems behaviour must be predictable. The use of active databases in real-time systems introduces unpredictability in the system, e.g. due to their use of active rules. The behaviour in active databases is usually specified in ECA-rules. Sets of ECA-rules are hard to analyse, which implies that the behaviour of the ECA-rule set is hard to predict. The purpose of this project is to evaluate the ability to support the development of a predictable ECA-rule set. Using a formal method for the specification task is desirable, since a formal specification is analysable and can be proven correct. In this project, timed-automata are used for specifying the systems behaviour. A method for deriving predictable ECA-rules from a timed-automaton specification is developed, and successfully applied on a case-study specification. For this case-study specification, a set of ECA-rules preserving the analysed behaviour of the timed-automata specification is derived.
95

Partition Aware Database Replication : A state-update transfer strategy based on PRiDe

Olby, Johan January 2007 (has links)
Distributed real-time databases can be used to support data sharing for applications in wireless ad-hoc networks. In such networks, topology changes frequently and partitions may be unpredictable and last for an unbounded period. In this thesis, the existing database replication protocol PRiDe is extended to handle such long-lasting partitions. The protocol uses optimistic and detached replication to provide predictable response times in unpredictable networks and forward conflict resolution to guarantee progress. The extension, pPRiDe, combines update and state transfer strategies. Update transfer for intra-partition communication can reduce bandwidth usage and ease conflict resolution. State transfer for inter partition conflicts removes dependency on a common state between partitions prior to the merge to apply update messages on. This makes the resource usage independent of the life span of partitions. This independence comes at the cost of global data stability guarantees and pPRiDe can thus only provide per partition guarantees. The protocol supports application specific conflict resolution routines for both state and update conflicts. A basic simulator for mobile ad-hoc networks has been developed to validate that pPRiDe provides eventual consistency. pPRiDe shows that a hybrid approach to change propagation strategy can be beneficial in networks where collaboration by data sharing within long lasting partitions and predictable resource usage is necessary. These types of systems already require the conflict management routines necessary for pPRiDe and can benefit from an existing protocol. In addition to pPRiDe and the simulator this thesis provides a flexible object database suitable for future works and an implementation of PRiDe on top of that database.
96

Using Artificial Neural Networks for Admission Control in Firm Real-Time Systems

Helgason, Magnus Thor January 2000 (has links)
Admission controllers in dynamic real-time systems perform traditional schedulability tests in order to determine whether incoming tasks will meet their deadlines. These tests are computationally expensive and typically run in n * log n time where n is the number of tasks in the system. An incoming task might therefore miss its deadline while the schedulability test is being performed, when there is a heavy load on the system. In our work we evaluate a new approach for admission control in firm real-time systems. Our work shows that ANNs can be used to perform a schedulability test in order to work as an admission controller in firm real-time systems. By integrating the ANN admission controller to a real-time simulator we show that our approach provides feasible performance compared to a traditional approach. The ANNs are able to make up to 86% correct admission decisions in our simulations and the computational cost of our ANN schedulability test has a constant value independent of the load of the system. Our results also show that the computational cost of a traditional approach increases as a function of n log n where n is the number of tasks in the system.
97

Massively parallel neural computation

Fox, Paul James January 2013 (has links)
Reverse-engineering the brain is one of the US National Academy of Engineering’s “Grand Challenges.” The structure of the brain can be examined at many different levels, spanning many disciplines from low-level biology through psychology and computer science. This thesis focusses on real-time computation of large neural networks using the Izhikevich spiking neuron model. Neural computation has been described as “embarrassingly parallel” as each neuron can be thought of as an independent system, with behaviour described by a mathematical model. However, the real challenge lies in modelling neural communication. While the connectivity of neurons has some parallels with that of electrical systems, its high fan-out results in massive data processing and communication requirements when modelling neural communication, particularly for real-time computations. It is shown that memory bandwidth is the most significant constraint to the scale of real-time neural computation, followed by communication bandwidth, which leads to a decision to implement a neural computation system on a platform based on a network of Field Programmable Gate Arrays (FPGAs), using commercial off- the-shelf components with some custom supporting infrastructure. This brings implementation challenges, particularly lack of on-chip memory, but also many advantages, particularly high-speed transceivers. An algorithm to model neural communication that makes efficient use of memory and communication resources is developed and then used to implement a neural computation system on the multi- FPGA platform. Finding suitable benchmark neural networks for a massively parallel neural computation system proves to be a challenge. A synthetic benchmark that has biologically-plausible fan-out, spike frequency and spike volume is proposed and used to evaluate the system. It is shown to be capable of computing the activity of a network of 256k Izhikevich spiking neurons with a fan-out of 1k in real-time using a network of 4 FPGA boards. This compares favourably with previous work, with the added advantage of scalability to larger neural networks using more FPGAs. It is concluded that communication must be considered as a first-class design constraint when implementing massively parallel neural computation systems.
98

Configuring mode changes in fixed-priority preemptively scheduled real-time systems = Configuração de mudanças de modo em sistemas de tempo real escalonados com política preemptiva de prioridade fixa / Configuração de mudanças de modo em sistemas de tempo real escalonados com política preemptiva de prioridade fixa

Massaro Júnior, Flávio Rubens, 1976- 27 August 2018 (has links)
Orientadores: Paulo Sérgio Martins Pedro, Edson Luiz Ursini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia / Made available in DSpace on 2018-08-27T04:51:09Z (GMT). No. of bitstreams: 1 MassaroJunior_FlavioRubens_M.pdf: 3302871 bytes, checksum: aa117bbaac53f7ead30d1a21700e03aa (MD5) Previous issue date: 2015 / Resumo: Modos de operação e mudanças de modo são uma abstração útil para permitir que sistemas de tempo real sejam flexíveis e configuráveis. Trabalhos prévios em escalonamento preemptivo com prioridades fixas permitem que as tarefas passem de um modo de operação para outro provendo garantias de tempo real. No entanto, a configuração adequada dos parâmetros críticos, tais como o offset de uma tarefa, apesar de trabalhos anteriores terem abordado este assunto, permanece uma lacuna a ser explorada. Sem um método que automatize esta etapa do processo, garantindo ao mesmo tempo que os requisitos básicos sejam atendidos, a adoção plena de mudanças de modo em sistemas de tempo real permanece limitada a sistemas relativamente simples, com um conjuntos de tarefas limitado. Propomos um método para atribuir offsets às tarefas em uma mudança modo, através de uma abordagem Metaheurística (algoritmos genéticos). Este método permite a configuração e/ou a minimização da latência de pior caso de uma mudança modo. A latência de uma mudança de modo é um parâmetro crítico para ser minimizado, uma vez que durante a mudança de modo o sistema oferece funcionalidade limitada, uma vez que o conjunto de tarefas está parcialmente em operação. Também elaboramos uma classificação das mudanças de modo de acordo com as necessidades das aplicações. Esta classificação, quando aplicada a uma série de estudos de casos, permitiu validar a abordagem de minimização/configuração, estender a classificação anteriormente existente e demonstrar que o método é flexível, já que pode acomodar uma ampla variedade de tipos de mudanças de modo / Abstract: Modes of operation and mode-changes are a useful abstraction to enable configurable, flexible real-time systems. Substantial work on the fixed priority preemptive scheduling approach allowed tasks across a mode-change to be provided with real-time guarantees. However, the proper configuration of critical parameters such as task offsets, despite initial work, remains a gap in research. Without a method that automates this design step, while assuring that the basic requirements are met, the full adoption of mode-changes in real-time systems remains limited to relatively simple systems with limited task sets. We propose a method to assign offsets to tasks across a mode-change, using a metaheuristic approach (genetic algorithms). This method allows the configuration and/or the minimization of the worst-case latency of a mode-change. The latency of a mode change is a critical parameter to be minimized, since during the mode change the system offers limited functionality due to the fact that the task set is still incomplete. We also provide a classification of mode changes according to applications¿ requirements. This classification was useful, once applied to a number of case studies, both to validate the configuration approach and to a greater extent to show that the method is flexible in that it can accommodate a wide variety of types of mode-changes / Mestrado / Mestre em Tecnologia
99

Extensões na política EBS - controle de admissão e redução da ordem de complexidade temporal / Extensions on EBS policy - admission control and temporal complexity order reduction

Rogerio Fernandes Tott 08 December 2008 (has links)
Recentes pesquisas têm investigado modelos de garantia de desempenho baseados em restrições temporais, parametrizadas pela especificação de limites superiores de tempo médio de resposta. Este trabalho estende o desenvolvimento da política de escalonamento de temporeal EBS, aplicável a esse problema, apresentando um mecanismo de controle de admissão de requisições em aplicações com tais requisitos. A abordagem baseia-se em um método adaptativo capaz de administrar o nível de degradação do sistema, de forma a isolar o efeito do comportamento de um usuário sobre a qualidade de serviço oferecida aos demais usuários. Também é proposta uma modificação na implementação do algoritmo originalmente definido para a EBS, de forma a diminuir sua complexidade temporal. Resultados de simulação demonstram a efetividade dos mecanismos propostos / In recent research works performance guarantee models based on temporal constraints with specified response-time upper bounds have been investigated. This work extends the development of the EBS real-time scheduling policy, applicable to this problem, by proposing an admission control mechanism. The introduced approach is based on an adaptive model which, based on the system degradation level, tries to isolate the impact of the behavior of a given user upon the quality of service offered to the other users. Its also proposed a new algorithm to reduce the complexity order of the original EBS implementation. Simulation results illustrate the effectiveness of proposed methods
100

Mode Change in Real-time Component Systems / Mode Change in Real-time Component Systems

Outlý, Matěj January 2011 (has links)
The goal of the thesis is to examine possibilities of dynamic reconfiguration in real-time component systems, especially to formally describe support of operating modes. The thesis introduces a reconfiguration mechanism based on properties and relations between them. The mechanism is designed to facilitate a straight forward modeling of operating modes and reconfiguration rules and preserves re-usability of assembled components. The thesis also presents a realization of the mechanism suitable for the domain of embedded real-time systems.

Page generated in 0.0298 seconds