• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 50
  • 34
  • 13
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 275
  • 58
  • 45
  • 37
  • 33
  • 32
  • 32
  • 24
  • 23
  • 22
  • 21
  • 21
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Contributions aux problèmes d'évolution

Fino, Ahmad 01 February 2010 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'étude de trois équations aux dérivées partielles et d'évolution non-locales en espace et en temps. Les solutions de ces trois solutions peuvent exploser en temps fini. Dans une première partie de cette thèse, nous considérons l'équation de la chaleur nonlinéaire avec une puissance fractionnaire du laplacien, et obtenons notamment que, dans le cas d'exposant sur-critique, le comportement asymptotique de la solution lorsque $t\rightarrow+\infty$ est déterminé par le terme de diffusion anormale. D'autre part, dans le cas d'exposant sous-critique, l'effet du terme non-linéaire domine. Dans une deuxième partie, nous étudions une équation parabolique avec le laplacien fractionnaire et un terme non-linéaire et non-local en temps. On montre que la solution est globale dans le cas sur-critique pour toute donnée initiale ayant une mesure assez petite, tandis que dans le cas sous-critique, on montre que la solution explose en temps fini $T_{\max}>0$ pour toute condition initiale positive et non-triviale. Dans ce dernier cas, on cherche le comportement de la norme $L^1$ de la solution en précisant le taux d'explosion lorsque $t$ s'approche du temps d'explosion $T_{\max}.$ Nous cherchons encore les conditions nécessaires à l'existence locale et globale de la solution. Une toisième partie est consacré à une généralisation de la deuxième partie au cas de systèmes $2\times 2$ avec le laplacien ordinaire. On étudie l'existence locale de la solution ainsi qu'un résultat sur l'explosion de la solution avec les mêmes propriétés étudiées dans le troisième chapitre. Dans la dernière partie, nous étudions une équation hyperbolique dans $\mathbb{R}^N,$ pour tout $N\geq2,$ avec un terme non-linéaire non-local en temps. Nous obtenons un résultat d'existence locale de la solution sous des conditions restrictives sur les données initiales, la dimension de l'espace et les exposants du terme non-linéaire. De plus on obtient, sous certaines conditions sur les exposants, que la solution explose en temps fini, pour toute condition initiale ayant de moyenne strictement positive.
122

Evolution and Regularity Results for Epitaxially Strained Thin Films and Material Voids

Piovano, Paulo 01 June 2012 (has links)
In this dissertation we study free boundary problems that model the evolution of interfaces in the presence of elasticity, such as thin film profiles and material void boundaries. These problems are characterized by the competition between the elastic bulk energy and the anisotropic surface energy. First, we consider the evolution equation with curvature regularization that models the motion of a two-dimensional thin film by evaporation-condensation on a rigid substrate. The film is strained due to the mismatch between the crystalline lattices of the two materials and anisotropy is taken into account. We present the results contained in [62] where the author establishes short time existence, uniqueness and regularity of the solution using De Giorgi’s minimizing movements to exploit the L2 -gradient flow structure of the equation. This seems to be the first analytical result for the evaporation-condensation case in the presence of elasticity. Second, we consider the relaxed energy introduced in [20] that depends on admissible pairs (E, u) of sets E and functions u defined only outside of E. For dimension three this energy appears in the study of the material voids in solids, where the pairs (E, u) are interpreted as the admissible configurations that consist of void regions E in the space and of displacements u of the atoms of the crystal. We provide the precise mathematical framework that guarantees the existence of minimal energy pairs (E, u). Then, we establish that for every minimal configuration (E, u), the function u is C 1,γ loc -regular outside an essentially closed subset of E. No hypothesis of starshapedness is assumed on the voids and all the results that are contained in [18] hold true for every dimension d ≥ 2.
123

Teoria de estratificação e condições de regularidade / Stratification Theory and regularity conditions

Vanessa Munhoz Reina Bezerra 23 July 2007 (has links)
Na presente dissertação faremos um estudo dos conjuntos algébricos, semialgébricos, analíticos, semianalíticos e subanalíticos, real e complexo, através das condições de regularidade da estratificação destes conjuntos. A idéia básica em estratificação é decompor um espaço singular em variedades regulares; e as condições de regularidade, são um controle de como essas variedades se reencontram. Faremos uma abordagem geral das principais condições de regularidade. As condições (a) e (b) de H. Whitney, a (c)-regularidade de K. Bekka, a condição Whitney fraca, definida por D. Trotman e K. Bekka, o teste da razão de Kuo e a (w)-regularidade de Verdier, apresentando suas principais propriedades, teoremas e condições de existência / In the present dissertation we do a study of algebraic, semialgebraic, analytic, semianalytic and subanalytic sets, real and complex, through the regularity conditions of the stratification of these sets. The basic idea in stratification is to decompose a singular space into manifolds; and the regularity conditions, is a control of how these manifolds fit together. We do a general approach of the main regularity conditions. The conditions (a) and (b) of H. Whitney, the (c)-regularity of K. Bekka, the condition weakly Whitney, defined for D. Trotman and K. Bekka, the Kuo ratio test and the (w)-regularity of Verdier, presenting their main properties, theorems and conditions of existence
124

[en] REGULARITY THEORY FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS / [pt] TEORIA DA REGULARIDADE PARA EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES

MIGUEL BELTRAN WALKER URENA 31 January 2024 (has links)
[pt] Primeiro examinamos soluções de viscosidade Lp para equações elípticas totalmente não lineares com ingredientes de fronteira mensuráveis. Ao considerar p0 < p < d, focamos nas estimativas da regularidade dos gradientes derivadas de potenciais não lineares. Encontramos condições para Lipschitz-continuidade local das soluções e continuidade do gradiente. Examinamos avanços recentes na teoria da regularidade decorrentes de estimativas potenciais (não lineares). Nossas descobertas decorrem de – e são inspiradas por – fatos fundamentais na teoria de soluções de Lp-viscosidade, e resultados do trabalho de Panagiota Daskalopoulos, Tuomo Kuusi e Giuseppe Mingione (DKM2014). Na segunda parte provamos a regularidade parcial de mapas harmônicos com peso fracamente estacionários com dados de fronteira livre em um cone. Como ponto de partida, damos uma olhada na teoria da regularidade parcial interior para mapas harmônicos fracionários de minimização de energia intrínseca do espaço euclidiano em variedades Riemannianas compactas e suaves para potências fracionárias estritamente entre zero e um. Mapas harmônicos fracionários intrínsecos podem ser estendidos para mapas harmônicos com peso, então provamos regularidade parcial para mapas harmônicos minimizantes locais com dados de fronteira (parcialmente) livres em meios-espaços, mapas harmônicos fracionários então herdam essa regularidade. / [en] We first examine Lp-viscosity solutions to fully nonlinear elliptic equations with bounded measurable ingredients. By considering p0 < p < d, we focus on gradient-regularity estimates stemming from nonlinear potentials. We find conditions for local Lipschitz-continuity of the solutions and continuity of the gradient. We survey recent breakthroughs in regularity theory arising from (nonlinear) potential estimates. Our findings follow from – and are inspired by – fundamental facts in the theory of Lp-viscosity solutions, and results in the work of Panagiota Daskalopoulos, Tuomo Kuusi and Giuseppe Mingione (DKM2014). In the second part we prove partial regularity of weakly stationary weighted harmonic maps with free boundary data on a cone. As a starting point we take a look at the interior partial regularity theory for intrinsic energy minimising fractional harmonic maps from Euclidean space into smooth compact Riemannian manifolds for fractional powers strictly between zero and one. Intrinsic fractional harmonic maps can be extended to weighted harmonic maps, so we prove partial regularity for locally minimising harmonic maps with (partially) free boundary data on half-spaces, fractional harmonic maps then inherit this regularity.
125

Extremality, symmetry and regularity issues in harmonic analysis

Carneiro, Emanuel Augusto de Souza 26 May 2010 (has links)
In this Ph. D. thesis we discuss four different problems in analysis: (a) sharp inequalities related to the restriction phenomena for the Fourier transform, with emphasis on some Strichartz-type estimates; (b) extremal approximations of exponential type for the Gaussian and for a class of even functions, with applications to analytic number theory; (c) radial symmetrization approach to convolution-like inequalities for the Boltzmann collision operator; (d) regularity of maximal operators with respect to weak derivatives and weak continuity. / text
126

Quantifying structural irregularity effects for simple seismic design.

Sadashiva, Vinod Kota January 2010 (has links)
This study was initiated to quantify the effect of different degrees of irregularity on structures designed for earthquake using simplified analysis. The types of irregularity considered were: (a) Vertical Irregularity • Mass • Stiffness -Strength (b) Horizontal (Plan) Irregularity • Diaphragm Flexibility Simple models were used to allow many analyses to be conducted in a relatively short time. For vertical irregularity studies, simple shear-type structures were designed according to the New Zealand design Standard, NZS1170.5, firstly as regular structures, and then they were redesigned as irregular structures to the same target drift. Both regular and irregular structures were then subjected to a suite of records, and vertical irregularity effects evaluated from the difference in response. For the flexible diaphragm effect study, simple models of structures were developed with: (a) a rigid diaphragm assumption; and (b) a flexible diaphragm assumption. Flexible diaphragm effects were evaluated by conducting time-history analyses and comparing the responses of structures with rigid and flexible diaphragms. A mechanics based approach was developed to quantify flexible diaphragm effects, which was shown to produce consistent results with those from time-history analyses. Relationships between the degree of irregularity and the change in behaviour were developed. This information facilitates designers and plan checkers to rapidly evaluate the likely effect of irregularity on structures. It provides guidance as to: (a) when the effect of structural irregularity can be ignored, and (b) the change in demands for different degrees of structural irregularity. The relations developed also provide a rigorous technical basis for future regularity provisions in the NZS1170.5 and other world-wide seismic design codes.
127

Stabilité d'inégalités variationnelles et prox-régularité, équations de Kolmogorov périodiques contrôlées / Stability of variational inequalities and prox-regularity, Perdiodic solutions of controlled Kolmogorov equations

Sebbah, Matthieu 02 July 2012 (has links)
Dans une première partie, nous étudions la stabilité des solutions d'une inégalité variationnelle de la forme cône normal perturbé par une fonction. Pour ce faire, nous généralisons la méthode de S. Robinson, basée sur le degré topologique, aux espaces de Hilbert et à une classe de multi-applications non nécessairement convexes, appelées multi-applications prox-régulières.  Dans une deuxième partie, nous étudions des problèmes de contrôle optimal liés à la modélisation de problèmes de bio-procédés, et l'on s'intéresse à des contraintes périodiques sur l'état. Ainsi, nous étendons les résultats d'existence de solutions périodiques des EDOs de Kolmogorov au cadre du contrôle en rajoutant un paramètre contrôlé à ces équations. Ceci nous permet d'étudier par la suite un problème de commande optimale d'un chemostat sous forçage périodique, et d'en déduire la synthèse optimale pour ce problème. / In the first part, we study stability of solutions of a variational inequality of the form normal cone perturbed by a mapping. To do so, we generalize the method introduced by S. Robinson, based on the topological degree, to the general Hilbert setting on the class of non-necessarily convex set-valued mapping, called prox-regular set-valued mapping. In the second part, we study optimal control problems connected to the modelization of bio-processes and we consider periodic constraints on the state variable. We first extend the existence result of periodic solutions of Kolmogorov ODEs to the setting of control by adding a controlled parameter to those ODEs. This allows us to study an optimal control problem modeling a chemostat under a periodic forcing for which we give the optimal synthesis.
128

Forcing e regularidade na reta real / Forcing and regularity in the real line

Gaspar, Michel Fernandes 05 March 2018 (has links)
O estudo das propriedades de regularidade na reta real é tão antigo quanto o surgimento da teoria dos conjuntos no final do século XIX. Essas propriedades indicam bom comportamento para subconjuntos da reta real, sendo os exemplos mais proeminentes a propriedade do conjunto perfeito, a Lebesgue mensurabilidade e a Baire mensurabilidade. Neste trabalho outras propriedades de regularidade são exploradas, como a propriedade de Ramsey, a propriedade doughnut, a Marczewski mensurabilidade, a Miller mensurabilidade, a Laver mensurabilidade, dentre outras. A relação que existe entre propriedades de regularidade e forcing é conhecida desde a década de 70 com os trabalhos de Robert Solovay, que, por exemplo, construiu um modelo de teoria dos conjuntos onde todo subconjunto da reta real é Lebesgue mensurável, Baire mensurável e tem a propriedade do conjunto perfeito. Todas essas propriedades de regularidade são capturadas em uma definição geral recorrendo à poderosa técnica do \\textit{forcing idealizado}, introduzida e explorada por Jindrich Zapletal em 2004. O principal estudo sistemático das propriedades de regularidade via forcing idealizado foi feito por Yurii Khomskii em 2012 em sua tese de doutorado. O resultado de Solovay mencionado acima é provado nesse contexto geral de regularidade. Também são exploradas caracterizações para a regularidade dos conjuntos no segundo nível da hierarquia projetiva via forcing sobre L. Para a maioria dos assuntos abordados é dada alguma nota histórica. / The study of the regularity properties in the real line is as old as the beginning of set theory at the end of the 19th century. These properties indicate well behavior for subsets of the real line, being the Lebesgue measurability, Baire measurability and perfect set properties the most prominent examples. In this work other regularity properties are explored, such as the Ramsey property, the doughnut property, the Marczewski measurability, the Miller measurability, the Laver measurability, among others. The relationship between regularity properties and forcing is known since the 70\'s with the work of Robert Solovay, who, for example, constructed a model of set theory in which every subset of the real line is Lebesgue measurable, Baire measurable, and has the perfect set property. All of theses regularity properties are captured by a general definition making use of the powerful technique of \\textit, introduced by Jindrich Zapletal in 2008. The main systematic study of regularity properties via idealized forcing was done by Yurii Khomskii in 2012 in his Ph.D dissertation. The result of Solovay mentioned above is proved in this general framework. Characterization results for regularity properties of the sets in the second level of the projective hierarchy via forcing over L are also explored. Some historical notes are provided for most of the addressed subjects.
129

Regularidade para equaÃÃes quase lineares em conjuntos singulares degenerados / Regularity to almost linear equations degenerate singular sets

NarcÃlio Silva de Oliveira Filho 21 November 2014 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / We will study a new universal gradient continuity estimate for solutions to quasi-linear equations with varying coefficients at singular set of degeneracy: S(u) := {X : Du(X) = 0}. Ourmain theorem reveals that along S(u), u is asymptotic as regular as solutions to constant coefficient equations. In particular, along the critical set S(u),u enjoys a modulus of continuity much superior than the possibly low, continuity feature of the coefficients. The results are new even in the context of linear elliptic equations, where it is herein shown that H^1- weak solutions to div (a(X,Du))= 0 with aij elliptic and dinicontinuous are actually C ^{1,1^{-}} along S(u). The results and insights of this work foster a new understanding os smoothness properties of solutions to degenerate or singular equations, beyond typical elliptic regularity estimates, precisely where the diffusion attributes of the equation collapse. / Neste trabalho estudaremos uma nova estimativa universal para a continuidade do gradiente de soluÃÃes para equaÃÃes quase lineares com coeficientes variÃveis em conjuntos singulares degenerados que serÃo denotados por S(u) := {X : Du(X) = 0} . O resultado principal deste trabalho revela que ao longo de S(u), u à assintoticamente tÃo regular quanto as soluÃÃes das equaÃÃes com coeficientes constantes. Em particular, ao longo do conjunto S(u), Du tem um mÃdulo de continuidade superior a baixa caracterÃstica de continuidade de seus coeficientes. Os resultados sÃo novos e mesmo no contexto de equaÃÃes diferenciais lineares onde se mostra que soluÃÃes H^1- fracas da equaÃÃo div(a(X, Du)) = 0 com os aij elÃpicos e Dini-ContÃnuos sÃo realmente C ^{1,1^{-}} ao longo de S(u). Os resultados e as perspectivas deste trabalho promovem um novo entendimento sobre as propriedades suavidade de soluÃÃes para equaÃÃes singulares, ou degeneradas, alÃm de estimativas tÃpicas sobre regularidade elÃpticas, precisamente onde temos os atributos de difusÃo do equaÃÃo do colapso.
130

Optimisation de consommation pour un véhicule de type voiture / Optimisation of energy consumption for a car-like vehicle

Oukacha, Ouazna 17 November 2017 (has links)
Cette thèse présente l’étude d’un problème de contrôle optimal dont le coût est non-différentiable pourcertaines valeurs du contrôle ou de l’état, tout en restant Lipschitz. Ce problème nous a été inspiré par laproblématique générale de la minimisation de l’énergie dépensée par un véhicule ou robot de type voiture lelong d’un trajet dont le profil de route est connu à l’avance. Cette problématique est formulée à l’aide d’unmodèle simple de la dynamique longitudinale du véhicule et une fonction coût qui englobe la notiond’efficacité du processus de conversion énergétique. Nous présentons un résultat de régularité des contrôles,valable pour la classe des systèmes non-linéaires, affines dans les contrôles, classe à laquelle appartient notreproblème. Ce résultat nous permet d’exclure les phénomènes de chattering de l’ensemble des solutions. Nousréalisons trois études de cas pour lesquelles les trajectoires optimales sont composées d’arcs bang,d’inactivations, d’arcs singuliers et, dans certains cas, de retours en arrière. / The present thesis is a study of an optimal control problem having a non-differentiable, but Lipschitz, costfunction. It is inspired by the minimization of the energy consumption of a car-like vehicle or robot along aroad which profile is known. This problem is stated by means of a simple model of the longitudinal dynamicsand a running cost that comprises both an absolute value function and a function that accounts for theefficiency of the energy conversion process. A regularity result that excludes chattering phenomena from theset of solutions is proven. It is valid for the class of control affine systems, which includes the consideredproblem. Three case studies are detailed and analysed. The optimal trajectories are shown to be made of bang,inactivated and backward arcs.

Page generated in 0.0534 seconds