• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 699
  • 368
  • 265
  • 70
  • 62
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 18
  • 10
  • 10
  • 8
  • Tagged with
  • 1807
  • 377
  • 341
  • 166
  • 156
  • 148
  • 143
  • 111
  • 106
  • 100
  • 98
  • 86
  • 83
  • 82
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1091

Synthesis and Characterization of Wholly Aromatic, Water-Soluble Polyimides and Poly(amic acid)s Towards Fire Suppression Foams

Stovall, Benjamin Joseph 28 May 2021 (has links)
Polyimides epitomize one of the most versatile high-performance engineering polymers. Polyimides are inherently mechanically robust, chemically inert, and thermooxidatively stable to 400+ °C depending on their chemical structure, enabling their function in numerous aerospace, electronic, medical, and flame-retardant applications. Polyimides can be highly modular even within synthetic limitations, which promotes and sustains innovative research. One recent interest concerns the innovation of fire suppression foams. Aqueous film-forming foams (AFFFs) are regularly sought when engaging liquid fuel (gasoline, jet fuel) fires. AFFFs utilize perfluorinated compounds (PFCs) like perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), which exhibit toxicity, bioaccumulation, and persistence in the environment resulting in the presence of fluorosurfactant chemicals in environments either through direct or secondary exposure via chemical migration. Recently, the USEPA has even detected PFAS in drinking water at hundreds of military training facilities and civilian airports. While fluorinated compounds provide desirable thermooxidative stability and excellent fire retardancy, the environmental impact imposed by these chemicals strongly encourages research that targets the complete removal of PFCs in conventional formulations. This thesis focuses on the fundamental development of water-soluble sulfonated polyimide (sPI) and poly(amic acid) (sPAA) systems for next-generation polymer-based fire suppression foams. The use of sulfonated monomers and poly(amic acid) salt formation enables tunable structures and water solubilities. The polymers maintain competitive thermal stabilities to conventional polyimides and, when combined with readily available, non-toxic surfactants (SDS), produce stable foams. The MIL-F-24385F performance requirement evaluates foam quality/stability, drainage time, and burnback resistance to access viability and provides comparison to other systems; preliminary testing shows that sPI/sPAA formulations perform well. Solution rheology offers insights into fundamental scaling relationships of specific viscosity vs. concentration in both salt and salt-free solution that are important to future foam development. Additionally, the structural nature of the sPIs/ sPAAs allows for their modification with phosphonium moieties or siloxanes, which are slated to have positive effects on performance. Overall, these sPIs and sPAAs provide a promising platform for the future direction of fire suppression foams. / Master of Science / High-performance polymers are used in the most demanding of engineering applications. Polyimides represent one of the most versatile high-performance polymers. Polyimides are mechanically strong, chemically inert, and resistant to extreme temperatures depending on their chemical structure, allowing their use in numerous aerospace, electronic, medical, and flame-retardant applications. Polyimides are synthetically versatile, which enables the discovery of new uses after decades of research. One new targeted application is fire suppression foams. Aqueous film-forming foams (AFFFs) are the standard when battling liquid fuel (gasoline, jet fuel) fires. AFFFs contain perfluorinated compounds (PFCs), which are toxic and persist in the environment; they migrate easily to affect indirectly exposed ecosystems. Recently, the USEPA has even detected PFAS in drinking water at hundreds of military training facilities and civilian airports. While AFFFs with PFCs are highly effective, replacement materials are needed. This thesis focuses on the fundamental development of water-soluble sulfonated polyimide (sPI) and poly(amic acid) (sPAA) systems for fire suppression foams. The polymers remain thermally stable, and when combined with readily available surfactants (SDS), produce stable foams. Preliminary fire testing shows that sPI/sPAA formulations perform well against military specifications. Solution rheology (study of flow) explores the solution behavior of sPI, which offers insights into fundamental concentration-viscosity relationships that are important to future foam development. Additionally, the structural nature of the sPIs/ sPAAs allows for their modification with phosphonium groups or siloxanes, which changes their characteristics. Overall, these sPIs and sPAAs are initially promising for the future direction of fire suppression foams.
1092

The effect of materials' rheology on process energy consumption and melt thermal quality in polymer extrusion

Abeykoon, C., Pérez, P., Kelly, Adrian L. 26 October 2020 (has links)
Yes / Polymer extrusion is an important but an energy intensive method of processing polymeric materials. The rapid increase in demand of polymeric products has forced manufactures to rethink their processing efficiencies to manufacture good quality products with low-unit-cost. Here, analyzing the operational conditions has become a key strategy to achieve both energy and thermal efficiencies simultaneously. This study aims to explore the effects of polymers' rheology on the energy consumption and melt thermal quality (ie, a thermally homogeneous melt flow in both radial and axil directions) of extruders. Six commodity grades of polymers (LDPE, LLDPE, PP, PET, PS, and PMMA) were processed at different conditions in two types of continuous screw extruders. Total power, motor power, and melt temperature profiles were analyzed in an industrial scale single-screw extruder. Moreover, the active power (AP), mass throughput, torque, and power factor were measured in a laboratory scale twin-screw extruder. The results confirmed that the specific energy consumption for both single and twin screw extruders tends to decrease with the processing speed. However, this action deteriorates the thermal stability of the melt regardless the nature of the polymer. Rheological characterization results showed that the viscosity of LDPE and PS exhibited a normal shear thinning behavior. However, PMMA presented a shear thickening behavior at moderate-to-high shear rates, indicating the possible formation of entanglements. Overall, the findings of this work confirm that the materials' rheology has an appreciable correlation with the energy consumption in polymer extrusion and also most of the findings are in agreement with the previously reported investigations. Therefore, further research should be useful for identifying possible correlations between key process parameters and hence to further understand the processing behavior for wide range of machines, polymers, and operating conditions.
1093

Effect of Dispersion on Rheology and 3D Printing of Chitosan-Graphene-Titanium Dioxide Composites

Alidu, Mariama 06 August 2024 (has links)
Three-dimensional printing is renowned for its ability to produce complex geometries. By utilizing a pressure-driven additive manufacturing (AM) process called direct ink write (DIW) with polymer composite ink, it is possible to create parts with tailored internal microstructures that enhance surface area and particle-particle adsorption kinetics for water remediation applications. However, DIW of particle-filled systems faces challenges, particularly nozzle clogging. This paper explores the relationship between dispersion of aggregate size, torsional rheology, and the capacity to print relatively highly particle-filled systems. Various characterization methods, including torsional rheology, dynamic light scattering (DLS), and field emission scanning electron microscopy (FESEM) were employed utilizing a chitosan-graphene-titanium dioxide (CS-G-TiO2) polymer composite ink composed of TiO2 nanoparticles (1 wt.% to 25 wt.%), graphene (1 wt.%), and chitosan (5 wt.% to 9 wt.%) to evaluate the effect of ultrasonication techniques (bath vs. probe) on aggregate size. Probe-sonicated dispersions showed a more narrow monodispersed and unimodal aggregate size distribution with a primary average aggregate size of 255 nm. In contrast, bath-sonicated dispersions exhibited a moderately polydispersed, trimodal distribution with modes centered at 90 nm, 295 nm, and 5.6 μm. Non-Newtonian rheological parameters such as yield stress, complex viscosity, storage, and loss moduli were higher for the probe-sonicated CS-G-TiO2 composite ink than for the bath-sonicated CS-G-TiO2 composite ink. This increase is likely attributed to enhanced particle interactions, which allow for greater CS adsorption. These findings offer valuable insights into optimizing formulations for desired rheological properties in DIW printing. The results enable the direct ink writing of intricate geometries with high surface areas and less shape distortion, providing significant insights into processing similar multi-component slurry-based composite inks for DIW. / Master of Science / Researchers are exploring new ways to remove harmful toxins from waterbodies using 3D printing technology. By employing a specialized additive manufacturing (AM) printing process called direct ink write (DIW) and a composite ink (CS-G-TiO2) composed of chitosan (CS), graphene (G), and titanium dioxide (TiO2), it is possible to create parts with a tailored internal microstructure that allows for greater surface area and enhanced particle-particle adsorption kinetics. However, challenges remain with DIW of particle-filled systems, particularly regarding nozzle clogging. This assessment focuses on how the size of aggregates in G-TiO2 dispersions affects printability and the rheological behavior of the CS-G-TiO2 composite inks. To address these issues, different ultrasonication techniques and their effects on aggregate size were investigated, as well as the shear-thinning and yield stress behavior of the inks. These findings could be further analyzed to understand the underlying mechanism in particle aggregation and optimize the formulation for desired rheological properties for direct ink write (DIW) printing.
1094

<b>Extruding Waxy Corn Starch to Understand the Effect of Shear On Viscosity</b>

Troy Tonner (19233445) 28 July 2024 (has links)
<p dir="ltr">Extrusion is a complex process that is difficult to model due to the complex geometry. In addition, modeling the flow of a shear and thermal sensitive material such as waxy corn starch further complicates the problem. Starch undergoes three main transformations during processing: 1. Gelatinization, 2. Melting, and 3. Fragmentation. The first two can be combined into starch conversion and have been studied in detail, along with their effect on viscosity.</p><p dir="ltr">This work extruded waxy corn starch using the “NASA” autogenous single screw extruder with and without steam locks at moisture contents of 30% w.b. and 35% w.b. as well as screw speeds of 300 rpm and 600 rpm. A Brabender single screw was used at 100 rpm, 35% w.b., and 140°C to obtain starch at another molecular weight. Molecular weight was measured using HPSEC-MALLS-RI, and viscosity was measured using a capillary rheometer. Starch conversion was checked by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC).</p><p dir="ltr">The work extended upon previous rheological models by separating the lumped SME (specific mechanical energy) parameter into degree of starch conversion and molecular weight reduction. The new viscosity model can be combined with kinetics to predict rheology in computational fluid dynamics models that model the extrusion process. The approach can aid in designing the extrusion process and other unit operations by predicting extrusion characteristics without having to build the new design using a trial-and-error approach.</p><p dir="ltr">Additionally, a method was investigated to decouple SME into an average shear rate and mean residence time by setting SME equal to SEC (specific energy consumption). Shear history was found from the decoupled average shear rate and mean residence time. Shear history was a worse predictor for molecular weight reduction than SME alone because it was derived from SME with approximated average values from the extrusion trials.</p><p dir="ltr">Finally, the effect of steam locks in the “NASA” extruder was investigated and found to marginally reduce molecular weight, reduce the mass flow rate and increase the mean residence time for every condition except at a screw speed of 600 rpm and moisture content of 30% w.b. The work as a whole demonstrates the importance of understanding how materials change during processing.</p>
1095

Multi-scale simulations for polymer melt spinning processes / ポリマー溶融紡糸プロセスのマルチスケールシミュレーション

Xu, Yan 23 January 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25016号 / 工博第5193号 / 新制||工||1991(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)准教授 谷口 貴志, 教授 大嶋 正裕, 教授 古賀 毅 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
1096

Predicting Rheology Of UV-Curable Nanoparticle Ink Components And Compositions For Inkjet Additive Manufacturing

Lutz, Cameron D 01 June 2024 (has links) (PDF)
Inkjet additive manufacturing is the next step toward ubiquitous manufacturing by enabling multi-material printing that can exhibit various mechanical, electronic, and thermal properties. These characteristics are realized in the careful formulation of the inks and their functional materials, but there are many constraints that need to be satisfied to allow optimal jetting performance and build quality when used in an inkjet 3-D printer. Previous research has addressed the desirable rheology characteristics to enable stable drop formation and how the metallic nanoparticles affect the viscosity of inks. The contending goals of increasing nanoparticle-loading to improve material deposition rates while trying to maintain optimal flow dynamics is the closely held trade secret in formulating these inkjet compositions. We use data from previous experiments and the CRC Handbook of Chemistry and Physics to train machine learning regression models to predict the relevant factors of inkjet printability at a standardized temperature of 25ºC: viscosity, surface tension, and density. These models were used to predict the rheological factors of the main components of a UV-curable inkjet ink formulation: UV-curable monomers and oligomers, photoinitiators, dispersants, and humectants. This paper compares the relative performance of five machine learning algorithms to assess the effectiveness of each approach for chemoinformatics regression tasks.
1097

[pt] REOLOGIA DE HIDRATOS DE CICLOPENTANO EM EMULSÕES ÁGUA EM ÓLEO MODELO / [en] RHEOLOGY OF CYCLOPENTANE HYDRATES IN WATER-IN-MODEL OIL EMULSIONS

MARCIO COUTO OZORIO 31 May 2021 (has links)
[pt] O estudo reológico de hidratos vem se tornando cada vez mais importante graças à constante expansão da indústria de óleo e gás, principalmente em águas ultra profundas. O processo de formação de hidratos é uma grande preocupação, principalmente porque, em muitos casos, leva ao bloqueio total dos dutos de produção, causando interrupção na produção, além de perda de tempo de dinheiro. Hidratos são compostos cristalinos formados por água e pequenas moléculas de gás, em condições termodinâmicas de alta pressão e baixa temperatura. A fim de estudar este fenômeno, por analogia, compostos químicos que facilitam esta formação, à pressão atmosférica, como ciclipentano (CP) e tetrahidrofurano (THF) são utilizados. No presente trabalho, emulsões compostas por CP, óleo Primol, água deionizada e Span 80 (agente estabilizador) foram utilizadas e analisadas no reômetro Physica MCR301. A partir de uma perturbação térmica, pôde-se caracterizar vários parâmetros que influenciam a formação dos hidratos, tais como: taxa de cisalhamento, temperatura de indução, fração volumétrica da água, taxa de resfriamento etc. Além disso, foram realizados testes que avaliam a habilidade de reconstrução dos hidrato com o tempo e a existência de uma tensão limite de escoamento, a partir de testes oscilatórios. / [en] The study of hydrates rheology is becoming increasingly important due to the constant expansion of the oil and natural gas industry to deeper water. The hydrate formation process is a big concern mainly because, in many cases, it ends up generating the blockage of pipelines, safety problems, and loss of time and money. Hydrates are crystals compounds formed by water and small gas molecules at typical thermodynamic conditions of high pressure and low temperature. In order to study the hydrates phenomenon by analogy, chemical compounds that facilitate their formation at atmospheric pressure are used, such as cyclopentane (CP) and tetrahydrofuran (THF). In this study, an emulsion formed from CP, Primol oil, deionized water, and Span 80 (as stabilizer agent) is employed. Initially, the results aim to characterize the several parameters that influence hydrate formation, such as: shear rate, induction temperature, water volume fraction, cooling rate etc. In another set of results, the ability of reconstruction of the CP hydrates and the existence of a yield strength are assessed.
1098

Thermal homogeneity and energy efficiency in single screw extrusion of polymers. The use of in-process metrology to quantify the effects of process conditions, polymer rheology, screw geometry and extruder scale on melt temperature and specific energy consumption

Vera-Sorroche, Javier January 2014 (has links)
Polymer extrusion is an energy intensive process whereby the simultaneous action of viscous shear and thermal conduction are used to convert solid polymer to a melt which can be formed into a shape. To optimise efficiency, a homogeneous melt is required with minimum consumption of process energy. In this work, in-process monitoring techniques have been used to characterise the thermal dynamics of the single screw extrusion process with real-time quantification of energy consumption. Thermocouple grid sensors were used to measure radial melt temperatures across the melt flow at the entrance to the extruder die. Moreover, an infrared sensor flush mounted at the end of the extruder barrel was used to measure non-invasive melt temperature profiles across the width of the screw channel in the metering section of the extruder screw. Both techniques were found to provide useful information concerning the thermal dynamics of the extrusion process; in particular this application of infrared thermometry could prove useful for industrial extrusion process monitoring applications. Extruder screw geometry and extrusion variables should ideally be tailored to suit the properties of individual polymers but in practise this is rarely achieved due the lack of understanding. Here, LDPE, LLDPE, three grades of HDPE, PS, PP and PET were extruded using three geometries of extruder screws at several set temperatures and screw rotation speeds. Extrusion data showed that polymer rheology had a significant effect on the thermal efficiency on the extrusion process. In particular, melt viscosity was found to have a significant effect on specific energy consumption and thermal homogeneity of the melt. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. Single flighted extruder screws exhibited poorer temperature homogeneity and larger fluctuations than a barrier flighted screw with a spiral mixer. These results highlighted the importance of careful selection of processing conditions and extruder screw geometry on melt homogeneity and process efficiency. Extruder scale was found to have a significant influence on thermal characteristics due to changes in surface area of the screw, barrel and heaters which consequently affect the effectiveness of the melting process and extrusion process energy demand. In this thesis, the thermal and energy characteristics of two single screw extruders were compared to examine the effect of extruder scale and processing conditions on measured melt temperature and energy consumption. Extrusion thermal dynamics were shown to be highly dependent upon extruder scale whilst specific energy consumption compared more favourably, enabling prediction of a process window from lab to industrial scale within which energy efficiency can be optimised. Overall, this detailed experimental study has helped to improve understanding of the single screw extrusion process, in terms of thermal stability and energy consumption. It is hoped that the findings will allow those working in this field to make more informed decisions regarding set conditions, screw geometry and extruder scale, in order to improve the efficiency of the extrusion process. / Engineering and Physical Sciences Research Council
1099

Chain Extension of Polyamide-6 & Polyamide-6/Organoclay Nanocomposites. Control of thermal degradation of polyamide-6/organoclay nanocomposites during extrusion using a novel chain extender

Tuna, Basak January 2016 (has links)
Novel solutions to offset thermal degradation of polyamide-6 (PA-6) and organoclay (organically modified layered silicates) nanocomposites during melt compounding have been investigated. In this research, a novel chain extender (Joncryl ADR 3400) has been used to improve thermal stability of PA-6 and PA- 6/organoclay nanocomposites during melt compounding. The materials were compounded using a linear twin extruder and various laboratory scale mixers. The effects of organoclay and chain extender were studied using both processing methods. In order to replicate large scale production used in industry, a comprehensive plan of experimental work was carried out under different processing conditions (extrusion temperature and screw speed), organoclay and chain extender loading using a linear twin screw extruder. Rheology, mechanical and thermal properties were analysed and selected samples were also characterised by TEM and FTIR. Process induced degradation of PA-6 during the melt compounding was found to have significant influence on the rheological and mechanical properties. Rheological and mechanical characterisation clearly showed showed that incorporation of the chain extender minimised thermal degradation of PA-6 and nanocomposites during melt processing. Visual analysis of selected nanocomposites using TEM confirmed that chain extender increased the dispersion of nanoclays in the PA- 6 matrix. The crystallinity of the PA-6 was slightly affected by addition of organoclay and chain extender. The samples obtained by linear twin screw extrusion showed higher rheological properties than the samples from laboratory scale mixers suggesting better mixing and less thermal degradation during extrusion. / Republic of Turkey, Ministry of National Education. / The full text was made available at the end of the embargo, 31st Dec 2019.
1100

Fluid Mechanics of High Speed Deformable Roll coating. An experimental and theoretical study of film thickness and stability in high speed deformable roll coating flow with Newtonian and non-Newtonian liquids

Sarma, Sreedhara January 2015 (has links)
High operation speeds and thin coating films are desirable in many industrial applications. But the quality of the product, which is primarily determined by an optimum process window, is affected by non-uniformities and instabilities originating at higher operation speeds. Unlike other academic works, because of associated industrial relevance, particular attention was given towards the use of industrially relevant coating systems or generation of model fluids, which replicate the real coating solutions. One of the novelties of the research proposed lie in an integrated approach, utilising a range of comparative rheometrical techniques, with a focus on measurement of: (i) high strain rate shear viscosity [η], (ii) high strain rate uniaxial extensional viscosity [ηE] (iii) high strain rate elasticity (N1). Deformable roll coating, in terms of classification, is the ultimate metered coating flow. The flow is controlled by the combination of hydrodynamic force and elastic deformation effect, which could be complicated by the presence of non-Newtonian fluid. This study necessitated the design and construction of a sophisticated deformable coating rig with the ability to operate over a wide range of conditions. Although the irregularities and instabilities associated with the roller coating process has been studied previously, the concerned speeds of operation in this study is around three times higher. The main objectives of this study was to carry out a comprehensive experimental programme establishing relationship exist between film thickness, film quality and operating parameters. Main identified operating parameters are roll speeds, roll gaps or applied load between the rolls, the elasticity with thickness of elastomeric layer and different rheological properties of the coating fluids. Surface instabilities and air entrainment are identified as the major limitations to being able to coat at higher speeds. / Tata Steel Europe / The full text was made available at the end of the embargo, 1st July 2020

Page generated in 0.0431 seconds