• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 23
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 23
  • 20
  • 17
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Experimental And Numerical Assessment Of Pressuremeter Testing

Isik, Nihat Sinan 01 January 2006 (has links) (PDF)
The purposes of this study are to investigate the possible effects of variables like testing depth, length to diameter ratio of the probe, presence of disturbed annulus around the borehole etc. on the derived parameters from the pressuremeter test, and to develop possible alternative methods for the determination of undrained shear strength of cohesive soils, and cohesion and internal friction angle of intermediate geomaterials. For this purpose numerical simulations of pressuremeter test were performed. In the study, it is also aimed to investigate the effect of rock quality designation (RQD) or some other rock mass parameters such as geological strength index (GSI) and rock mass rating (RMR) and intact rock strength on the deformation modulus determined from the pressuremeter test. To accomplish this task, Dikmen greywackes, weathered andesites and mudrocks exposed around Ankara - Sincan region were selected for field and laboratory studies. Empirical relationships using GSI, RMR, RQD were developed for the estimation of deformation modulus of greywackes and mudrocks cropping out around Ankara. Numerical simulations revealed the presence of disturbed annulus around the borehole causes underestimation of deformation modulus and overestimation of undrained shear strength. Test depth has no effect on the deformation modulus and undrained shear strength / the effect of length to diameter ratio of the probe on the deformation modulus is minor where as it causes overestimations of undrained shear strength. Pore pressure dissipation in low permeability soils around the pressuremeter was studied using numerical simulations. These analyses suggest that for permeabilities lower that 10-10 m/sec there is no pore pressure dissipation around the pressuremeter probe. It was determined that the inverse analysis yielded successful results for the determination of shear strength parameters of intermediate geomaterials.
62

Elastic Wave Propagation and Evaluation of Low Strain Dynamic Properties in Jointed Rocks

Sebastian, Resmi January 2015 (has links) (PDF)
When the point under consideration is not near to the source of vibration, the strains developed in the rock mass due to the passage of waves are usually of small magnitude, and within the elastic range. However, the rock mass may be subjected to a wide range of strain levels depending on the source of vibration and the wave frequency, even within the elastic limit. The present study is based on the two general conditions existing at field, long wave length propagation of waves and intermediate wavelength propagation of waves. When the wavelength of propagating wave is much longer than the joint spacing, it is referred to as long wavelength condition and is associated with propagation of low frequency waves across closely spaced joints. When wavelength of propagating wave is nearly equal to joint spacing, it is known as intermediate wavelength condition and is associated with propagation of high frequency waves. Long wave length propagation of waves has been studied by conducting laboratory experiments using Resonant Column Apparatus on developed plaster gypsum samples. The influence of joint types, joint spacing and joint orientation on wave propagation has been analyzed at three confining stresses under various strain levels. The wave velocities and damping ratios at various strain levels have been obtained and presented. Shear wave velocities are more dependent on confining stress than compression wave velocities across frictional joints whereas, compression wave velocities are more dependent on confining stress than shear wave velocities across filled joints. Wave velocities are at minimum and wave damping is at maximum across horizontal joints whereas wave velocities are at maximum and wave damping is at minimum across vertical joints. Shear wave velocity and shear wave damping are more dependent on joint orientations than compression wave velocity and compression wave damping. As Resonant Column Apparatus has some limitations in testing stiff samples, a validated numerical model has been developed using Discrete Element Method (DEM) that can provide resonant frequencies under torsional and flexural vibrations. It has been found from numerical simulations, that reduction of normal and shear stiffness of joint with increasing strain levels leads to wave velocity reduction in jointed rock mass. Intermediate wave length propagation of waves has been studied by conducting tests using Bender/ extender elements and the numerical simulations developed using 3DEC (Three Dimensional Distinct Element Code).Parametric study on energy transmission, wave velocities and wave amplitudes of shear and compression waves, has been carried out using the validated numerical model. The propagation of waves across multiple parallel joints was simulated and the phenomenon of multiple reflections of waves between joints could be observed. The transformations of obliquely incident waves on the joint have been successfully modeled by separating the transmitted transformed P and S waves. The frequency dependent behavior of jointed rocks has been studied by developing a numerical model and by applying a wide range of wave frequencies. It has been found that low frequency shear waves may involve slips of rock blocks depending on the strength of rock joint, leading to less transmission of energy; while low frequency compression waves are well transmitted across the joints. High frequency shear and compression waves experience multiple reflections and absorptions at joints.
63

Caracterização mecânica e hidrogeológica dos maciços das cavas de Alegria Centro e Sul, Samarco Mineração S.A. / Mechanical and hydrogeological characterization of rock mass of Alegria Centro and Sul pits, Samarco Mineração S.A.

Carneiro, Samuel Ricardo Carvalho 01 August 2013 (has links)
Made available in DSpace on 2015-03-26T13:28:28Z (GMT). No. of bitstreams: 1 texto completo.pdf: 9684635 bytes, checksum: 3491aec02ba187b7f125d21090d312b3 (MD5) Previous issue date: 2013-08-01 / This paper presents a slope stability and groundwater flow analysis of rock masses of Alegria Centro and Alegria Sul pits, Samarco Mineração S.A., located in the Iron Quadrangle region, Minas Gerais State, Brazil. The main purpose was to characterize the mechanical properties - throughout GSI and RMR geomechanics classification methods, and hydrogeological characterization, of all rock and soil masses in the studied area, in order to produce data to support the preparation of a suitable pit design covering local particularities. This study included geological-geotechnical mapping, geotechnical drillhole logging, sampling of 45 undisturbed highly weathered block samples (classes V and VI) and drillhole core sampling. Physical and strength tests performed comprised geotechnical characterization tests, direct shear tests, uniaxial and triaxial strength tests and point load tests. To characterize the hydrogeological properties, in addition to the monitoring of groundwater level, field and laboratory experiments were carried out to determine the hydraulic conductivity and frequency fractures analyzes through the Cubic Law relation. In this study slope stability analyzes were performed by limit equilibrium and analyzes of flows by the finite element method, using the software SLIDE Rocscience Inc., with the determination of the critical safety factors before and after the drawdown. / Este trabalho apresenta uma avaliação da estabilidade e do fluxo subterrâneo dos maciços das cavas de expansão da Samarco Mineração S.A., denominadas Alegria Centro e Sul, localizadas na região do Quadrilátero Ferrífero, Minas Gerais, Brasil. O principal objetivo foi realizar uma caracterização das propriedades mecânicas para as quais combinaram-se os métodos de classificação geomecânica RMR e GSI, e hidrogeológicas, dos maciços rochosos e solos existentes na área de estudo, de maneira a produzir dados que permitissem a elaboração de um projeto de cava adequado à essas características. Este estudo contou com mapeamento geológico-geotécnico, descrição geotécnica de testemunhos de sondagens rotativas, amostragem de 45 blocos indeformados de rochas de alto grau de alteração (classes V e VI) e amostragem de testemunhos de furos de sondagens. Para caracterização das propriedades de resistência foram realizados ensaios de caracterização física, ensaios de cisalhamento direto, ensaios de compressão uniaxial e triaxial e ensaios de resistência à compressão puntiforme. Para caracterização das propriedades hidrogeológicas, além do monitoramento do nível d água subterrânea, foram conduzidos ensaios para determinação da condutividade hidráulica em campo, em laboratório e análises de frequência de fraturas através da relação conhecida como Lei Cúbica. No presente estudo foram realizadas análises de estabilidades por equilíbrio limite e análises de fluxos pelo método de elementos finitos, utilizando o software SLIDE da Rocscience Inc., com a determinação dos fatores de segurança críticos antes e após o rebaixamento do nível d água.
64

Análise numérica 3D do túnel auxiliar a jusante da UHE simplício-anta / 3D Numerical analysis of the tunnel downstream of the auxiliary

MORAES NETO, Floriano Rodrigues de 29 August 2011 (has links)
Made available in DSpace on 2014-07-29T15:18:23Z (GMT). No. of bitstreams: 1 Dissertacao Floriano Rodrigues de Moraes Neto.pdf: 3384428 bytes, checksum: 25598c7b69ec1f6df8596059eb0b923b (MD5) Previous issue date: 2011-08-29 / With the accelerated occupation of the space, the use of tunnels play an important role in engineering, in this sense, the deformations control during it s construction process is very important for the best performance of tunnels. In this sense the numerical analyzes represent a likely economy in the design process. This paper uses a theory of elasticity in the FlexPDE, the same allows the solution of a system of partial differential equations using the finite elements method and producing a graphical output of the problem. In this sense simulations were performed using three-dimensional numerical deep tunnel under the elastic rock in a physical environment continuously, equivalent to the rock mass. Analyzes were made of three-dimensional numerical condition and constructive process of a circular tunnel deep in the rock. These results were compared with the elastic solution of Kirsch for a cross section corresponding to the plane strain state, showing good concordance of numerical results with the analytical. After the verification stage of the numeric model has also been given to the numerical simulation 3D and analyses based on monitoring data from the tunnel auxiliary of the Hydroelectric Power Plant (HPP) of Simplicio/Anta, located in Paraiba do Sul River, in the state of Rio de January - RJ. In this work were carried out measurements of convergence in various sections of the tunnel at the same time of excavation progress. These results and the parameters of characterisation, strength and deformation were colected from Vissoto Junior (2009). Finally the results of the analyzes numerical 3D were compared with the results of field, and after the adjustment of geotechnical parameters in back analyses was obtained a good concordance of numerical results with field data. In this case studied the excavation of the tunnel had a linear elastic behavior since the rock mass is of good quality and the tunnel relatively small. / Com a ocupação acelerada dos espaços superficiais, a utilização de túneis passa a desempenhar um papel importante na engenharia, neste sentido o controle de suas deformações durante o processo construtivo dos mesmos, é de vital importância para o melhor desempenho de túneis. Nesse sentido as análises numéricas representam uma provável economia na fase de projeto. Este trabalho utiliza-se a teoria da elasticidade no programa FlexPDE, o mesmo permite a solução de um sistema de equações diferenciais parciais utilizando o método de elementos finitos e produzindo uma saída gráfica do problema. Neste sentido foram realizadas simulações numéricas tridimensionais de escavação de túneis profundos em regime elástico em maciços rochosos num meio físico contínuo, equivalente ao maciço fraturado. Foram feitas análises numéricas tridimensionais da condição e processo construtivo de um túnel circular profundo escavado em rocha. Estes resultados foram comparados com a solução elástica de Kirsch para uma seção transversal correspondente ao estado de deformação plana, observando-se boa concordância dos resultados numéricos com os analíticos. Após a etapa de verificação do modelo numérico deu-se também a simulação numérica 3D e retroanálise com base em dados de monitoramento do túnel auxiliar de jusante da Usina Hidroelétrica (UHE) de Simplício/Anta, localizada no Rio Paraíba do Sul, município do Rio de Janeiro RJ. Nesta obra foram realizadas medições da convergência em diversas seções do túnel ao mesmo tempo em que ocorria o avanço da frente de escavação. Estes resultados e os parâmetros de caracterização, resistência e deformação foram retirados do trabalho de Vissoto Junior (2009). Finalmente os resultados obtidos das análises numéricas 3D foram comparados com os resultados de campo, e após o ajuste dos parâmetros geotécnicos realizados na retroanálise foi obtida uma boa concordância dos resultados numéricos com os dados de campo. Neste caso estudado a escavação do túnel teve um comportamento elástico linear já que o maciço rochoso é de boa qualidade e o túnel relativamente pequeno.
65

Analyse numérique discrète de l'aléa fontis et du foisonnement associés aux cavités souterraines / Discrete numerical analysis of the sinkhole hazard and the bulking associated to underground cavities

Ikezouhene, Yaghkob 15 September 2017 (has links)
Au cours du temps, les cavités souterraines sont soumises à un vieillissement et plusieurs types de dégradation peuvent apparaitre. Les anciennes exploitations souterraines, parfois constituées d’un ou plusieurs niveaux, n’ont, sans doute, pas été conçues pour être stables à long terme. Elles ont été réalisées à une époque où n'existaient pas d'enjeux en surface, de zones de travaux, ce qui permettait d’éviter de se préoccuper des mouvements de sol induits. Elles ont pu quelquefois être totalement ou partiellement remblayées, mais pas de manière systématique. L’effondrement d'une cavité souterraine engendre la déconsolidation des niveaux supérieurs des terrains de recouvrement. Ces mécanismes peuvent provoquer en surface deux types de désordres : un affaissement ou un fontis. L'affaissement et le fontis peuvent provoquer des graves dommages aux structures et aux infrastructures en surface mais aussi mettre en péril la sécurité des populations. Les travaux de cette thèse s’articulent autour de l’étude du foisonnement, du fontis et de sa propagation dans les terrains de recouvrement.Les objectifs de cette thèse sont doubles : tout d’abord il s’agit d’étudier le foisonnement de la roche lors d’un effondrement de toit de carrières souterraines ; ensuite il s’agit de modéliser la propagation du fontis dans les terrains de recouvrement et ainsi hiérarchiser les paramètres associés à ce phénomène.La première partie de cette thèse repose sur une étude bibliographique qui récapitule les méthodes d’exploitation, méthodes d’analyse de stabilité de carrières souterraines, méthodes de prévision de la hauteur d’effondrement et estimation de foisonnement. A l’issue de cette synthèse bibliographique l’étude s’est focalisée sur les carrières souterraines à faible profondeur exploitées par chambres et piliers. Ainsi, la modélisation numérique par la méthode des éléments discrets (MED) a été choisie pour analyser l’instabilité des toits de carrières souterraines.La seconde partie s’intéresse au développement d’un modèle numérique qui a pour objectifs : d’une part, le développement d’un Programme de Discrétisation des Massifs Rocheux (PDMR) qui constitue le préprocesseur du logiciel STTAR3D et le développement d’un code permettant le calcul du coefficient de foisonnement des débris de l’effondrement. D’autre part, l’implémentation des lois de comportement sur STTAR3D.La troisième partie consiste à déterminer, d’une part les caractéristiques physico-mécaniques d’échantillons prélevés dans la carrière de la Brasserie (Paris-France), qui a été choisie pour une tester le modèle développé et d’autre part, les deux paramètres de la loi de comportement utilisée pour modéliser les contacts à savoir  et µ.Enfin, la dernière partie de ce travail est constituée des simulations numériques pour lesquelles les paramètres de la loi de comportement mesuré expérimentalement ont été introduits dans STTAR3D. Dans la première étude numérique menée, on s’intéresse à l’effet de la hauteur de chute, du rayon de l’ouverture initiale du fontis et du degré de fracturation sur le foisonnement des décombres, ainsi qu’à l’effet de la variation du foisonnement sur la hauteur de l’effondrement et sur l’affaissement. Dans un second temps, on réalise un modèle de la carrière de la Brasserie dont on calcule le comportement par simulation numérique afin d’obtenir l’affaissement en surface et la hauteur de l’effondrement qui sont comparés aux observations in-situ / Over time, the underground cavities are subjected to aging and several types of degradation can occur. The old underground cavities have probably not been designed to be stable over the long term. They have sometimes been totally or partially backfilled, but not in a systematic way. The collapse of a mine causes deconsolidation of the upper levels of the overburden. These mechanisms can cause two types of disorders on the surface: subsidence or sinkhole. Subsidence and sinkhole can cause severe damage to structures and infrastructures in surface, but also jeopardize the safety of the population.The work of this thesis revolves around the study of rock's bulking, sinkhole and its spread in the overburden. The aims of this thesis are twofold: firstly, to study the bulking of rock during the roofs mine collapse; Secondly, modeling the spread of the sinkhole in the overburden and thus to prioritize the parameters associated with this phenomenon.The first part of this thesis is a bibliographical study which summarizes the methods of exploitation, methods of analysis of stability of underground quarries, methods of prediction of the height of collapse and estimation of the bulking factor. At the end of this bibliographic synthesis, the study focused on shallow underground quarries operated by rooms and pillars. Thus, numerical modeling using the discrete element method (MED) was chosen to analyze the instability of roofs of underground quarries.The second part focuses on the development of a numerical model with the following objectives: on the one hand, the development of a Rock Mass Discretization Program (RMDP) which constitutes the preprocessor of the STTAR3D software and the development of a Code allowing calculation of the bulking factor of the rubble of collapse. On the other hand, implementation of the behavior laws on STTAR3D.The third part consists of determining, on the one hand, the physicals and mechanicals characteristics of samples taken from the quarry of the Brasserie (Paris-France), which was chosen to test the model developed. On the other hand, determining of parameters of the behavior law used for modeling the contacts, namely “” and “μ”.Finally, the last part of this work is made of numerical simulations for which the parameters of the behavior law measured experimentally have been introduced in STTAR3D. In the first numerical study, we investigate the effect of fall height, the radius of the initial opening of the sinkhole and the fracturing degree on the bulking of the rubble, as well as the effect of variation of the bulking on the collapse height and on the subsidence. In a second step, a model of the Brasserie’s mine is realized, the behavior of which is studied by numerical simulation in order to obtain the subsidence on the surface and the collapse height, which are compared with the in-situ observations
66

[en] APPLICATION OF PROCEDURES FOR THE STABILITY ANALYSIS OF HIGH SLOPES IN MINING / [pt] APLICAÇÃO DE MÉTODOS DE ANÁLISE DE ESTABILIDADE DE TALUDES DE GRANDE ALTURA EM MINERAÇÃO

CARLOS ENRIQUE TRISTA AGUILERA 27 October 2017 (has links)
[pt] O presente trabalho apresenta a aplicação das metodologias de análise de estabilidade para taludes rochosos de grande altura comumente aplicados dentro do mundo da mineração. Mostra os principais fatores que influem dentro de uma análise de estabilidade como são a determinação das propriedades geomecânicas do maciço rochoso (rocha intacta e descontinuidades) e a caracterização geológica estrutural da região estudada. Esses parâmetros geralmente são obtidos a partir de ensaios de laboratório e de campo, além da informação que fornecem os mapeamentos geológicos. Outra forma de determinar estas propriedades de resistência é através de retro-análises em regiões onde tenha ocorrido algum tipo de colapso ou pela recopilação de dados que foram utilizados em análises anteriores e possam ser extrapolados. Também é apresentado um passo a passo das distintas etapas de um estudo de estabilidade e a obtenção de dados que finalizam na aplicação de softwares especializados na área de geotécnia e geomecânica, os quais permitirão determinar e pré-visualizar os possíveis problemas de instabilidade dentro dos taludes de um pit mineiro. Serão apresentados dois tipos de análises de estabilidade, o primeiro baseado na teoria do método de equilíbrio limite, o qual procura a possível superfície crítica de deslizamento dentro de um talude e que, condiciona a estabilidade da parede aos valores do fator de segurança. A segundo análise está relacionada com um modelo numérico, o qual aplica o método de elementos distintos ou de blocos, que permite a aplicação de um modelo constitutivo que descreva o comportamento dos materiais e das descontinuidades dentro do maciço rochoso, fornecendo como resultados a pré-visualização de variação de deslocamentos e vetores de velocidade para cada etapa de escavação. / [en] This thesis presents the application of procedures for the stability analysis of high slopes commonly applied in the mining world. It presents the main parameters that influence the stability analysis: determination of the rock mass geomechanical properties (intact rock and discontinuities) and the geological structures characterization of the studied region. These parameters generally are the result of laboratory and field tests, in addition, the information about the geological mapping. Another procedure for determining the properties strength may be through a back analysis of a collapsed zone or extrapolation of a data compilation from previous analyses. Apart from strength parameter determination and concept applying of rock mechanics, this research describes step by step the different stages of a stability analysis and its obtained data, this work then finishes with a geotechnical and geomechanical software application, which will determines and previews slope stability problems for a mining pit. This thesis includes two stability analysis procedures: the first method applies the limit equilibrium theory, which looks for the critical failure surface that depends on depends on a factor of safety. The second one applies a numerical model that uses distinct element method, which through a constitutive model, describes how the materials and discontinuities behave in a rock mass, obtaining as a result, the displacement and velocity vectors for each excavation stage.
67

Development of a Failure Criterion for Rock Masses Having Non-Orthogonal Fracture Systems

Mehrapour, Mohammad Hadi, Mehrapour, Mohammad Hadi January 2017 (has links)
Two new three-dimensional rock mass strength criteria are developed in this dissertation by extending an existing rock mass strength criterion. These criteria incorporate the effects of the intermediate principal stress, minimum principal stress and the anisotropy resulting from these stresses acting on the fracture system. In addition, these criteria have the capability of capturing the anisotropic and scale dependent behavior of the jointed rock mass strength by incorporating the effect of fracture geometry through the fracture tensor components. Another significant feature of the new rock mass strength criterion which has the exponential functions (equation 6.7) is having only four empirical coefficients compared to the existing strength criterion which has five empirical coefficients; if the joint sets have the same isotropic mechanical behavior, the number of the empirical coefficients reduces to two in this new strength criterion (equation 6.10). The new criteria were proposed after analyzing 452 numerical modeling results of the triaxial, polyaxial and biaxial compression tests conducted on the jointed rock blocks having one or two joint sets by the PFC3D software version 5. In this research to have several samples with the same properties a synthetic rock material that is made out of a mixture of gypsum, sand and water was used. In total, 20 joint systems were chosen and joint sets have different dip angles varying from 15 to 60 at an interval of 15 with dip directions of 30 and 75 for the two joint sets. Each joint set also has 3 persistent joints with the joint spacing of 42 mm in a cubic sample of size 160 mm and the joints have the same isotropic mechanical behavior. The confining stress combination values were chosen based on the uniaxial compressive strength (UCS) value of the modeled intact synthetic rock. The minimum principal stress values were chosen as 0, 20, 40 and 60 percent of the UCS. For each minimum principal stress value, the intermediate principal stress value varies starting at the minimum principal stress value and increasing at an interval of 20 percent of the UCS until it is lower than the strength of the sample under the biaxial loading condition with the same minimum principal stress value. The new rock mass failure criteria were developed from the PFC3D modeling data. However, since the joint sets having the dip angle of 60 intersect the top and bottom boundaries of the sample simultaneously, the joint systems with at least one of the joint sets having the dip angle of 60 were removed from the database. Thus, 284 data points from 12 joint systems were used to find the best values of the empirical coefficients for the new rock mass strength criteria. λ, p and q were found to be 0.675, 3.16 and 0.6, respectively, through a conducted grid analysis with a high R2 (coefficient of determination) value of 0.94 for the new criterion given by equation 6.9 and a and b were found to be 0.404 and 0.972, respectively, through a conducted grid analysis with a high R2 value of 0.92 for the new criterion given by equation 6.10. The research results clearly illustrate how increase of the minimum and intermediate principal stresses and decrease of the joint dip angle, increase the jointed rock block strength. This dissertation also illustrates how different confining stress combinations and joint set dip angles result in different jointed rock mass failure modes such as sliding on the joints, failure through the intact rock and a combination of the intact rock and joint failures. To express the new rock mass strength failure criteria, it was necessary to determine the intact rock strengths under the same confining stress combinations mentioned earlier. Therefore, the intact rock was also modeled for all three compression tests and the intact rock strengths were found for 33 different confining stress combinations. Suitability of six major intact rock failure criteria: Mohr-Coulomb, Hoek-Brown, Modified Lade, Modified Wiebols and Cook, Mogi and Drucker-Prager in representing the intact rock strength was examined through fitting them using the aforementioned 33 PFC3D data points. Among these criteria, Modified Lade, Modified Mogi with power function and Modified Wiebols and Cook were found to be the best failure criteria producing lower Root Mean Square Error (RMSE) values of 0.272, 0.301 and 0.307, respectively. Thus, these three failure criteria are recommended for the prediction of the intact rock strength under the polyaxial stress condition. In PFC unlike the other methods, macro mechanical parameters are not directly used in the model and micro mechanical parameter values applicable between the particles should be calibrated using the macro mechanical properties. Accurate calibration is a difficult or challenging task. This dissertation emphasized the importance of studying the effects of all micro parameter values on the macro mechanical properties before one goes through calibration of the micro parameters in PFC modeling. Important effects of two micro parameters, which have received very little attention, the particle size distribution and the cov of the normal and shear strengths, on the macro properties are clearly illustrated before conducting the said calibration. The intact rock macro mechanical parameter values for the Young’s modulus, uniaxial compression strength (UCS), internal friction angle, cohesion and Poisson's ratio were found by performing 3 uniaxial tests, 3 triaxial tests and 5 Brazilian tests on a synthetic material made out of a mixture of gypsum, sand and water and the joint macro mechanical parameter values were found by conducting 4 uniaxial compression tests and 4 direct shear tests on jointed synthetic rocks with a horizontal joint. Then the micro mechanical properties of the Linear Parallel Bond Model (LPMB) and Modified Smooth Joint Contact Model (MSJCM) were calibrated to represent the intact rock and joints respectively, through the specific procedures explained in this research. The similar results obtained between the 2 polyaxial experiments tests of the intact rock and 11 polyaxial experimental tests of the jointed rock blocks having one joint set and the numerical modeling verified the calibrated micro mechanical properties and further modification of these properties was not necessary. This dissertation also proposes a modification to the Smooth Joint Contact Model (SJCM) to overcome the shortcoming of the SJCM to capture the non-linear behavior of the joint closure varying with the joint normal stress. Modified Smooth Joint Contact Model (MSJCM) uses a linear relation between the joint normal stiffness and the normal contact stress to model the non-linear relation between the joint normal deformation and the joint normal stress observed in the compression joint normal stiffness test. A good agreement obtained between the results from the experimental tests and the numerical modeling of the compression joint normal test shows the accuracy of this new model. Moreover, another shortcoming associated with the SJCM application known as the interlocking problem was solved through this research by proposing a new joint contact implementation algorithm called joint sides checking (JSC) approach. The interlocking problem occurs due to a shortcoming of the updating procedure in the PFC software related to the contact conditions of the particles that lie around the intended joint plane during high shear displacements. This problem increases the joint strength and dilation angle and creates unwanted fractures around the intended joint plane.
68

Analysis of Excavation Damage, Rock Mass Characterisation and Rock Support Design using Drilling Monitoring

van Eldert, Jeroen January 2018 (has links)
Prior to an underground excavation a site investigation is carried out. This includes reviewing and analysing existing data, field data collected through outcrop mapping, drill core logging and geophysical investigations. These data sources are combined and used to characterise, quantify and classify the rock mass for the tunnel design process and excavation method selection. Despite the best approaches used in a site investigation, it cannot reveal the required level of detail. Such gaps in information might become significant during the actual construction stage. This can lead to; for example, over-break due to unfavourable geological conditions. Even more so, an underestimation of the rock mass properties can lead to unplanned stoppages and tunnel rehabilitation. On-the-other-hand, the excavation method itself, in this case, drill and blast, can also cause severe damage to the rock mass. This can result in over-break and reduction of the strength and quality of the remaining rock mass. Both of these attributes pose risks for the tunnel during excavation and after project delivery. Blast damage encompasses over-break and the Excavation Damage Zone (EDZ). In the latter irreversible changes occur within the remaining rock mass inside this zone, which are physically manifested as blast fractures. In this thesis, a number of methods to determine blast damage have been investigated in two ramp tunnels of the Stockholm bypass. Herein, a comparison between the most common methods for blast damage investigation employed nowadays is performed. This comparison can be used to select the most suitable methods for blast damage investigation in tunnelling, based on the environment and the available resources. In this thesis Ground Penetrating Radar, core logging (for fractures) and P-wave velocity measurements were applied to determine the extent of the blast damage. Furthermore, the study of the two tunnels in the Stockholm bypass shows a significant overestimation of the actual rock mass quality during the site investigation. In order to gain a more accurate picture of the rock mass quality, Measurement While Drilling (MWD) technology was applied. The technology was investigated for rock mass quality prediction, quantifying the extent of blast damage, as well as to investigate the potential to forecast the required rock support. MWD data was collected from both grout and blast holes. These data sets were used to determine rock quality indices e.g. Fracture Indication and Hardness Indicator calculated by the MWD parameters. The Fracture Index was then compared with the installed rock support at the measurement location. Lastly, the extent of the damage is investigated by evaluating if the MWD parameters could forecast the extent of the EDZ. The study clearly shows the capability of MWD data to predict the rock mass characteristics, e.g. fractures and other zones of weakness. This study demonstrated that there is a correlation between the Fracture Index (MWD) and the Q-value, a parameter widely used to determine the required rock support. The study also shows a correlation between the extent of the blast damage zone, MWD data, design and excavation parameters (for example tunnel cross section and charge concentration).
69

Evaluation of methods for rock mass characterization and design of rock slopes in crystalline rock / Utvärdering av metoder för karaktärisering av bergmassa och dimensionering av slänter i kristallint berg

Gottlander, Johanna Unknown Date (has links)
Construction of rock slopes is needed in many civil work projects. It is for example very common in road and railway cuts, but other applications include excavation for tunneling or building foundations, where perhaps sensitive constructions are present in the immediate vicinity. In Sweden the majority of the rock is hard crystalline bedrock of relatively good quality, and the fracture orientation have a large effect of the stability of the rock slope.If the geology is not properly considered for when the design of the slope is carried out, it can result in slope failure, with severe consequences. This applies especially if the rock slope is high, but unwanted effects like increased excavation and construction costs, could occur also in smaller slopes if the risks are not identified and managed. However, it is difficult to standardize design of rock slopes in fractured hard crystalline rock because of the uncertainties and variations in the geological conditions during the design phase.Rock mass characterization systems like Rock mass rating, RMR (Bieniawski 1989) and the Qsystem (Barton, Lien och Lunde 1974) are commonly used to describe the general rock mass quality. Whilst a good rock mass quality is generally easier to construct in, stability problems do occur due to structural geology in rock slopes even in good rock mass quality. The application of these systems in rock slopes can be problematic as they do not describe the geometry of the slope and how the fractures daylight in the slope face. Instead, stereonets can be used to visualize this, but fracture parameters of large importance for stability (persistence, roughness and alteration) are traditionally not presented in a stereonet analysis. Additionally, these parameters and the structural geological conditions can be difficult to predict and can vary significantly over short distances, why it can be difficult to forecast and predict failure in the design face.Slope instability due to large sliding and wedge failures have been observed in a large number of slopes in crystalline rock, and a standard method for design of rock slopes is lacking. This has given rise to the research question of how best to describe rock mass conditions, how to design slopes in crystalline rock and how to manage these risks during construction.To investigate this, three rock slopes where large failure had occurred were selected for the case study and were mapped, characterized and analyzed. The results from the case study showed that all rock slopes investigated had in common that failure had occurred along fractures of large persistence. This highlights the importance of evaluating the geology in the correct scale and suggest that lineament studies and other elevation based interpretation are perhaps more useful than previously thought. It also came to light that the planning and design process is inflexible which in many cases lead to large risks being overlooked or left unnoticed.A flow chart for risk classification was produced and suggested for aid in decision making aiming at simplifying project management of rock slopes, as well as aiding in visualization of the risk that rock slopes can be associated to.
70

[pt] ANÁLISE COMPUTACIONAL DE ESCAVAÇÕES SUBTERRÂNEAS EM MACIÇO ROCHOSO FRATURADO COM AVALIAÇÃO DA POROPRESSÃO NAS DESCONTINUIDADES / [en] NUMERICAL MODELING OF EXCAVATIONS IN A JOINTED ROCK MASS WITH THE EVALUATION OF PORE-WATER PRESSURE IN THE DISCONTINUITIES

RAFAELLA VILLELA SAMPAIO 12 April 2022 (has links)
[pt] O objetivo deste trabalho foi o de verificar a influência da modificação no campo de tensões ao redor de uma escavação em um maciço rochoso fraturado, observando a ocorrência do fechamento de fraturas e a redução da condutividade hidráulica na região ao redor da escavação. São apresentadas inicialmente as características básicas que devem ser consideradas ao analisar problemas em maciços rochosos fraturados e apontados os possíveis efeitos de uma escavação neste tipo de material. Uma breve revisão bibliográfica mostra alguns tipos de técnicas de análises numéricas disponíveis para simulação de problemas em meios descontínuos, com ênfase no método dos elementos discretos e, em especial, no método dos elementos distintos (DEM), empregado no software UDEC da Itasca Consulting Group Inc., utilizado neste trabalho. As simulações utilizam um acoplamento hidromecânico, onde o maciço é representado por um conjunto de blocos e as descontinuidades são tratadas como contornos dos blocos, sendo o fluxo permitido apenas no interior das fraturas. Foi utilizado um modelo hipotético com escavação circular para validação da modelagem a partir de soluções analíticas presentes na literatura. Além disso, foi realizado um estudo de caso real, de dois túneis localizados em uma importante via na cidade do Rio de Janeiro. A análise paramétrica do problema mostra a influência da modificação de algumas variáveis importantes neste tipo de fenômeno. Por fim, foram analisados os resultados de todos os casos, com suas considerações finais e sugestões para trabalhos futuros. / [en] This work aims to verify the influence of the stress field changing around an excavation in a jointed rock mass, noticing the fracture closure and the hydraulic conductivity decrease in the region surrounding the excavation. At first, the basic characteristics that should be considered in jointed rock masses analyses are presented, pointing out the potential effects caused by excavations in such materials. A brief literature review presents some types of numerical analysis techniques available for discontinuous medium modeling, focusing on the discrete elements methods and, specifically, in the distinct element method (DEM), applied in the UDEC software by Itasca Consulting Group Inc., which was utilized in this work. The simulations make use of a hydromechanical coupling, being the rock mass represented by an assembly of blocks. The water flow takes place among the discontinuities, which are treated as blocks’ boundaries. A hypothetical model was used for modeling validation by comparison with analytical solutions from the literature. Besides that, it was accomplished a real case study of two tunnels located at an important road in Rio de Janeiro city. The parametric analyses of the problem show the influence of changing some important variables in this type of phenomenon. At last, all the results have been discussed, with final considerations and future works suggestions.

Page generated in 0.0364 seconds