• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 457
  • 336
  • 88
  • 64
  • 50
  • 20
  • 14
  • 13
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 1269
  • 687
  • 250
  • 162
  • 97
  • 91
  • 73
  • 72
  • 67
  • 67
  • 64
  • 63
  • 63
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Subclinical Atherosclerosis Quantified Through Cumulative Shear Measurement

Papka, Margaret Lynne 01 August 2021 (has links) (PDF)
With the high mortality rate of cardiovascular disease, it is important to study the early signs. The early detection of cardiovascular disease can lead to saved lives. Currently the most prevalent detection methods are the Framingham Risk Score and the carotid intima media thickness, both of which are insufficient. The necessary tool for early detection requires a uniform quantification system. The stimulus leading to endothelial dysfunction, the most significant predictor of a major adverse cardiovascular event (MACE)—and subsequently subclinical atherosclerosis—is reduced shear stress. Increased surface relative roughness affects the flow profile transition from laminar to turbulent resulting in reduced shear rate. The relationship between the shear stress and the relative roughness was studied using a computer model for fluid flow. A model of the brachial artery was generated to study its hemodynamics. Roughness values for both laminar and turbulent flow were calculated to use with the governing equations programmed in COMSOL Multiphysics. With all other factors remaining constant in the model, the roughness values were changed. From the model profile plots, line graphs, and numeral data are generated. This data provides information about how the shear stress and the shear rate change with respect to the relative roughness value. The models with different wall boundary conditions—slip versus Navier slip—were unable to be directly compared due to the differences in value magnitude. When the flow profile transitions from laminar to turbulent, there is a corresponding drop in both the shear stress and the shear rate values. Additional testing is required to determine a critical relative roughness value for this change in cumulative shear.
662

Impact of Thermal Effects and Other Material Properties on the Performance and Electro-Thermal Reliability of Resistive Random Access Memory Arrays

Chakraborty, Amrita 21 December 2023 (has links)
As the semiconductor industry grapples with escalating scaling challenges associated with the floating gate MOSFET, alternative memory technologies like Resistive Random Access Memory (ReRAM) are gaining prominence in the scientific community. Boasting a straightforward device structure, ease of fabrication, and compatibility with CMOS (Complementary Metal-oxide Semiconductor) Back-end of Line (BEOL), ReRAM stands as a leading candi- date for the next generation of non-volatile memory (NVM). ReRAM devices feature nanoionics-based filamentary switching, outperforming flash memory in terms of power consumption, scalability, retention, ON/OFF ratio, and endurance. Furthermore, integrating ReRAMs within the CMOS BEOL/low-k Cu interconnect system not only reduces latency between the connectivity constraints of logic and memory modules but also minimizes the chip footprint. However, investigations have revealed a significant concern surrounding ReRAMs—specifically, their electro-thermal reliability. This research provides evidence highlighting the critical influence of material properties, deposition effects, and thermal transport on the device's performance and reliability. Various material systems have undergone in this work scrutiny to comprehend the impact of intrinsic material properties such as thermal conductivity, specific heat capacity, thermal diffusivity, and deposition effects like surface roughness on the electroforming voltages of ReRAM devices. The reference device structure considered in this work is Cu/TaOx/Pt, which has been compared with alternative configurations involving metals like Ru and Co as potential substitutes for Pt. Additionally, a new vehicle has been introduced to quantify cell degradation resulting from thermal cross-talk in crossbar Resistive Random Access Memory (ReRAM) arrays. Furthermore, a novel methodology has been presented to predict cell degradation due to remote heating, taking into account the cell's location, the material properties of the device, and geometry of its electrodes. The experimental results presented in this study showcase filament rupture caused by remote heating, along with spontaneous filament restoration ensuing from the subsequent cooling of the ReRAM cell. / Doctor of Philosophy / As the demand for compact, high-speed logic-memory modules continues to surge, the diminishing silicon real estate in our gadgets poses a challenge in extending Moore's law to meet the scaling needs of the semiconductor device industry. To tackle this challenge, emerging memory technologies like Resistive Random Access Memory (ReRAM) are positioned as promising successors to flash memory. ReRAM devices offer distinct advantages over flash memory, showcasing superior power consumption, scalability, long retention, a high ON/OFF ratio, and good endurance. Their compatibility with current CMOS (Complementary Metal-oxide Semiconductor) technology facilitates seamless integration. However, a significant concern associated with ReRAMs is their electro-thermal reliability. This research delves into how material properties comprising a ReRAM device and fabrication factors, such as the surface roughness of the material, can impact the electrical and thermal reliability of a ReRAM cell. In this context, a novel methodology has been introduced to predict cell degradation within ReRAM crossbar arrays induced by thermal cross-talk, considering material properties and the geometry of the device. The new methodology has been thoroughly verified on manufactured ReRAM arrays with various composite electrodes. The study also presents experimental results demonstrating the rupture of cell filaments due to remote heating, along with instances of spontaneous filament restoration due to subsequent cooling.
663

Fluid Dynamics and Surface Pressure Fluctuations of Turbulent Boundary Layers Over Sparse Roughness

Varano, Nathaniel David 29 April 2010 (has links)
Turbulent boundary layers over rough surfaces are a common, yet often overlooked, problem of practical engineering importance. Development of correlations between boundary layer parameters that can be used in turbulence models and the surface geometry is the only practical option for solving these problems. Experiments have been performed on a two-dimensional zero pressure gradient turbulent boundary layer over sparsely spaced hemispherical roughness elements of 2 mm diameter. Laser Doppler velocimetry was used to measure all three components of velocity. The friction velocity was calculated using an integral momentum balance. Comparisons were made with various fitting methods that assume the von Kármán constant is appropriate for rough walls. Results indicate that this is not the case, and that the slope of the semi-logarithmic portion of the mean streamwise profile may be a function of the ratio of inner and outer length scales. Comparisons were also made between various correlations that relate the surface geometry to the behavior of the mean velocity profile. In general, the existing correlations achieved a reasonable agreement with the data within the estimated uncertainties. A detailed study of the local turbulent structure around the roughness elements was performed. It was found that, in contrast to `sharper-edged' elements such as cylinders, an elevated region of TKE and Reynolds shear stress was found downstream of the element below the peak. This can be explained by the delay in separation of the flow coming over the top of the element due to the smooth curvature of the element. Surface pressure fluctuation measurements were made as well using a dual microphone noise reduction technique. There have only been a few past experiments on the surface pressure fluctuations under rough wall boundary layers. However, it has been shown that the spectra of the wall fluctuations can be used to predict the far-field noise spectrum [1,2]. Therefore it is been the goal of this research to verify existing correlations between the surface pressure fluctuation spectrum and the surface geometry as well as develop new correlations that provide insight into the interactions between the turbulent motions in the flow surface pressure. / Ph. D.
664

Fluid Dynamics and Surface Pressure Fluctuations of Two-Dimensional Turbulent Boundary Layers Over Densely Distributed Surface Roughness

Hopkins, Andrew 03 May 2010 (has links)
Measurements were made in two-dimensional zero pressure gradient turbulent boundary layers over 5 geometries of three-dimensional densely distributed surface roughness. A 3-velocity component laser Doppler velocimeter was used to measure instantaneous velocities. These measurements permitted an independent estimate of skin friction on the surfaces using a momentum balance approach, and the validity of the von Karman constant for rough walls was tested. Five roughness fetches were evaluated: three sandpaper roughness fetches of varying grit size and two cases of uniformly distributed hemispheres of different spacing. Optical surface profilometry was used to characterize the geometry of the sandgrain surfaces. It was found that the smooth wall von Karman constant can not be assumed for densely distributed rough wall flows in order to determine the skin friction for these flows. This requires an independent measure of skin friction using more than a single boundary layer profile. Near wall flow structure measurements found that the hemispherical elements do not have high TKE or Reynolds shearing stress regions at the trailing edge of elements as had been shown for sparsely spaced cylindrical elements. This is likely due to the sharp trailing corner of the cylindrical elements, as opposed to an effect of spacing. Rather, hemispherical roughness has a periodically occurring high stress and TKE region located between two element centers in the stream-wise direction at a height of approximately 1.5 times the roughness element height. The periodic nature of the near wall flow extends to approximately 4 roughness element heights. The traditional roughness function f(λ) did not correlate well with λ or the modified Λ for the experimental data. However, it was found that the friction coefficient for the current dense roughness cases is a constant 0.004, within the experimental uncertainty. Traditional inner wall scalings, outer wall scalings, and roughness scalings were not able to collapse surface pressure fluctuation spectra for the various rough wall surfaces tested. However, the data do collapse for individual geometries based on Reynolds number. This gives rise to the ability to predict pressure fluctuation spectra at other Reynolds numbers. / Ph. D.
665

Effects of Spacing and Geometry of Distributed Roughness Elements on a Two-Dimensional Turbulent Boundary Layer

Stewart, Devin O. 09 December 2005 (has links)
This thesis is a study of the effects of distributed roughness elements on a two-dimensional turbulent boundary layer. Measurements were taken on a total of ten rough wall configurations: four involving Gaussian spikes, and six with circular cylindrical posts. Rough wall flows are particularly suited to study with Laser Doppler Velocimetry (LDV) due to the fact that measurements are required near a solid surface, as well has in highly turbulent fluid. The LDV system used in this study is a fine resolution (~50 micron), three-component, fiber optic system. All mean velocities, Reynolds stresses, and triple products are measured. This study is unique in the range and variety of roughness cases for which data was taken. The data show that the flow over a rough wall is characterized by high levels of turbulence near the roughness element peaks at the interface between low-speed, near-wall fluid and the higher speed fluid above. Behind an element, high-momentum fluid sweeps toward the wall, and there is a small region of ejection of low-momentum fluid. Cylindrical elements typically have larger magnitudes of turbulent stresses at their peaks compared to Gaussian elements. Trends in mean velocity profile parameters such as displacement height, roughness effect, and wake parameter are examined with respect to roughness element geometry and spacing. / Master of Science
666

Impact Dynamics of Water Droplet on Solid Surfaces: Effect of Impact Reynolds Number, Hydrophobicity, Surface Roughness and Temperature

Naveed, Ahsan 23 June 2023 (has links)
One of the most complicated issues the aerospace and aviation industries are dealing with is aircraft icing. The impact and freezing process of a water droplet on a cold surface has been investigated over time in order to develop preventative methods for avoiding icing. In the present study, we examined the behavior of a water droplet impacting on an aluminum plate with a surface roughness of 0.01µm and surface temperature variation from room temperature to 0oC, −5oC, −10oC and −15oC. The effect of droplet impact Reynolds number along with surface temperature variation on non-dimensional parameters like spread factor, retraction rate, and spread velocity is analyzed. The increase in impact Reynolds number and droplet spread factor is observed with a rise in the initial height of the droplet. At a higher Reynolds number, inertial forces are dominant over viscous and capillary forces, while at a lower Reynolds number, surface temperature shows a significant effect. The graphical representation of droplet retraction rate indicates a decrease with lower surface temperature and a rise with higher Reynolds numbers. Moreover, the spread velocity of the droplet is higher with an increased Reynolds number, and surface temperature does not have a notable effect on it. A rapid transition of momentum from vertical to horizontal direction occurs, and droplet dissipates energy in overcoming the viscous effects. The effect of surface roughness variation coupled with surface temperature is investigated in detail for three different surface roughness of aluminum and glass. The increase in surface roughness and temperature enhance hydrophobic behavior by repelling the droplet, while reduced surface temperatures show hydrophilic behavior by causing adhesion of the droplet on surface. / Master of Science / The supercool water droplets exist in the atmosphere and whenever these droplets come in contact with a cold surface, ice is formed. This ice accretion phenomena is observed not only on aircraft's control surfaces, but also on jet engines, power transmission lines and wind turbine blades. Research is on going to understand the impact and freezing process of water droplets on different cold surfaces and subsequently devise methods for avoiding this phenomena. In the current research work, the droplet impact is analyzed on an aluminum plate with surface roughness of 0.01µm. The spread factor of the droplet indicates the liquid surface contact area, and an increase is observed at larger heights in spread factor, impact velocity, and Reynolds number due to high inertia. Then, the surface temperature is varied from 0oC to −5oC, −10oC and −15oC, and it is observed that as the viscous effects are higher at lower surface temperatures, the droplet dissipates more energy in overcoming the high viscous effects and the spread factor decreases . Moreover, the spread velocity of the droplet is the measure of rate at which the liquid-solid contact area increases. Initially the droplet has vertical momentum, and on impact it shifts from vertical to horizontal direction, as the velocity rises drastically after impact. Surface roughness is another important factor that affects the ability of a surface to repel (hydrophobic) and attract (hydrophilic) the droplet by affecting its spread rate. The more the surface roughness, the droplet spread factor reduces and droplet rebounds indicating the hydrophobic nature. While adhesion is observed at the lower surface temperature, even with high roughness, showing the hydrophilic nature.
667

The pattern of surface waves in a shallow free surface flow

Horoshenkov, Kirill V., Nichols, Andrew, Tait, Simon J., Maximov, G.A. January 2013 (has links)
Yes / This work presents new water surface elevation data including evidence of the spatial correlation of water surface waves generated in shallow water flows over a gravel bed without appreciable bed forms. Careful laboratory experiments have shown that these water surface waves are not well-known gravity or capillary waves but are caused by a different physical phenomenon. In the flow conditions studied, the shear present in shallow flows generates flow structures, which rise and impact on the water-air interface. It is shown that the spatial correlation function observed for these water surface waves can be approximated by the following analytical expression W(rho) = e(-rho 2/2 sigma w2)COS(2 pi L-0(-1)rho). The proposed approximation depends on the spatial correlation radius, sigma(w), characteristic spatial period, L-0, and spatial lag, . This approximation holds for all the hydraulic conditions examined in this study. It is shown that L-0 relates to the depth-averaged flow velocity and carries information on the shape of the vertical velocity profile and bed roughness. It is also shown that sigma(w) is related to the hydraulic roughness and the flow Reynolds number.
668

Numerical and experimental analysis of shallow turbulent flow over complex roughness beds

Zhang, Y., Rubinato, M., Kazemi, E., Pu, Jaan H., Huang, Y., Lin, P. 24 July 2019 (has links)
Yes / A set of shallow-water equations (SWEs) based on a k-epsilon Reynold stress model is established to simulate the turbulent flows over a complex roughness bed. The fundamental equations are discretized by the second-order finite-difference method (FDM), in which spatial and temporal discretization are conducted by staggered-grid and leap-frog schemes, respectively. The turbulent model in this study stems from the standard k-epsilon model, but is enhanced by replacing the conventional vertical production with a more rigorous and precise generation derived from the energy spectrum and turbulence scales. To verify its effectiveness, the model is applied to compute the turbulence in complex flow surroundings (including a rough bed) in an abrupt bend and in a natural waterway. The comparison of the model results against experimental data and other numerical results shows the robustness and accuracy of the present model in describing hydrodynamic characteristics, especially turbulence features on the complex roughness bottom. / National Key Research and Development Program of China (Grant No: 2016YFE0122500, 2013CB036401 and 2013CB036402), China Postdoctoral Science Foundation (Grant No: 2016M591184) and Programme of Introducing Talents of Discipline to Universities (Grant No: BC2018038) / Research Development Fund Publication Prize Award winner, June 2019.
669

Surface Instabilities for Adhesion Control

Davis, Chelsea Simone 01 May 2012 (has links)
Controlling the specific adhesive properties of surfaces is a technologically complex challenge that has piqued the interest of many research groups around the world. While many scientists have used complex topographic and chemically altered surfaces to tune adhesion, others have shown that naturally occurring phenomena, such as elastic instabilities, can impact adhesion. We provide a thorough investigation into the effects of periodic surface buckling instabilities, or wrinkles, on adhesion. Wrinkles are an attractive surface patterning alternative as they form spontaneously over large areas and their dimensions, namely wavelength and amplitude, can be controlled on length scales relevant for adhesion control. We focus on the development of fundamental relationships that relate wrinkle adhesion to materials properties and topographic feature geometry. To accomplish this goal, we first investigate the separation of a flat rigid punch from a single elastic cylinder, which models the separation of a single wrinkle. The knowledge gained from this study is then utilized to develop a scaling expression relating adherence force to wrinkle geometry, materials properties, and testing geometry. This scaling theory is validated by varying these parameters systematically in a series of model wrinkle adhesion experiments. Added complexity in the form of varied crosslinker density, which alters the ratio of storage to loss moduli, and geometric confinement effects on wrinkle adhesion are then studied. Finally, a novel technique for fabricating biaxial wrinkles with two independently-adjusted wavelengths is developed, adding an additional parameter which can be tuned to further control adhesion. A single elastic cylinder was probed with a finite rigid flat probe, allowing the separation mechanism of a single "macro" scale wrinkle to be determined. Rather than a long cylinder contact mechanism, which has been utilized in describing wrinkle adhesion mechanisms in the past, an elliptical contact area approximation was found to more appropriately describe the single cylinder adhesion data. To consider the impact of an array of cylinders on adhesion, a model wrinkle system comprised of an elastomeric foundation and chemically-simple polymer film was developed. The wrinkle wavelength, amplitude, substrate modulus, and probe radius were varied, and the normal adhesive response of each aligned wrinkled surface was determined. Overall, wrinkles were found to decrease the separation force relative to a smooth surface and the separation force varied inversely with the square root of a wrinkle dimension, either wavelength or amplitude. The effects of viscoelasticity on the adhesion of a wrinkled substrate that is geometrically confined was studied. Wrinkled surface features were molded onto the surface of a rigid cylindrical probe, and the normal adhesion of these probes contacting thin elastomeric films fabricated with varying crosslinker concentrations was measured. The materials-defined length scale relating adhesion energy and modulus controlled the wrinkle feature sizes that impacted the adhesive response of each smooth film. In the most highly crosslinked films, small wrinkles increased both the separation force and adhesion energy of the interface two-fold, while large wrinkles reduced adhesion to almost nothing. Capitalizing on knowledge gained in the fabrication of many wrinkled surfaces, a novel technique for fabricating biaxial wrinkles was developed. Aligned wrinkles were formed on a partially crosslinked substrate, the modulus of the substrate was increased by allowing the material to crosslink completely, and a mechanical compressive strain was then imposed orthogonal to the primary wrinkle direction. This process resulted in the formation of biaxial wrinkled surfaces with two distinct, independently controlled lateral dimensions or wavelengths.
670

Surface roughness and ion release properties of a bioactive restorative material Predicta Bioactive Bulk-fill

Berglund, Joel, Adell, Oscar January 2022 (has links)
Background: Dental filling materials are used on a regular basis by dentists. Commonly used filling materials on the current market are resin composites and glass ionomers cements. However, new materials continue to be presented on the market with claimed improved physical and chemical properties, among them Predicta Bioactive Bulk.    Aim: The aim of this study was to investigate the surface roughness and ion release properties of a bioactive restorative material.   Methods: Surface roughness and ion release properties of a new material, Predicta Bioactive Bulk, was compared to Ceram.X Spectra ST and Fuji LC II. The results were analyzed using Microsoft Office Excel and IBM SPSS Statistics software.    Results: The material with the lowest surface roughness at baseline was Predicta Bioactive Bulk and Ceram.X Spectra ST had the highest value. After polishing/finishing CeramX showed the lowest surface roughness and Fuji II LC had the highest value. After the water aging-test, submerged for two weeks, Ceram.X Spectra ST exhibited the lowest value of surface roughness and Fuji II LC showed the highest value. The material with the highest fluoride release after two and seven days was Fuji II LC and Predicta Bioactive Bulk hade the lowest.    Conclusion: The surface roughness of Predicta Bioactive Bulk was comparable to CeramX in the test regarding surface roughness. Therefore, it can be concluded the surface roughness is neither better nor worse than CeramX. From the study it can also be concluded that Predicta Bioactive Bulk had very low fluoride ion release properties.

Page generated in 0.4584 seconds