• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 67
  • 22
  • 21
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 322
  • 164
  • 98
  • 95
  • 92
  • 82
  • 73
  • 55
  • 42
  • 36
  • 33
  • 28
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Surface-Enhanced Raman Spectroscopy-Based Biomarker Detection for B-Cell Malignancies

Israelsen, Nathan 01 May 2015 (has links)
This thesis presents a light scattering-based method for biomarker detection, which could potentially be used for the quantification of multiple biomarkers specific to B-cell malignancies. This method uses fabricated gold nanoparticle probes to amplify inelastic light scattering in a process referred to as surface-enhanced Raman scattering. These gold nanoparticle probes were conjugated to antibodies for specific and targeted molecular binding. The spectrum of the amplified inelastic light scattering was detected using a spectrometer and a detector. To detect the light scattering signal from the gold nanoparticle probes, several commercial Raman spectrometer instruments were evaluated. Initial results from these evaluations are presented in this thesis. After system evaluation, a custom Raman microscope system was designed, built, and tested. This system was used for the development of a surface-enhanced Raman spectroscopy-based immunoassay. The development of this assay confirms the successful design of gold nanoparticle probes for the specific targeting and detection of immunoglobulins. The immunoassay also shows promise for the simultaneous detection of multiple biomarkers specific to B-cell malignancies.
172

Spectroelectrochemical Studies of Surface Species in the Gold/Thiosulfate System

Watling, Kym Marjorie, n/a January 2007 (has links)
This thesis presents results of studies using the technique of surface-enhanced Raman scattering (SERS) spectroscopy to investigate surface processes occurring on gold during electrochemical experiments in thiosulfate solutions and during leaching in ammoniacal copper(II) thiosulfate systems. The gold SERS electrode was characterised using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). SEM investigations of the SERS activated gold surface showed the presence of electrodeposited dendrites with nanoscale features. XRD studies of the dendrites showed them to be polycrystalline with a large proportion of Au(111). Rotating disk electrode (RDE) studies of polished and SERS electrodes were undertaken in order to clarify the electrochemistry of various thiosulfate systems. The ex situ techniques of XPS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to determine the presence of sulfur, copper and nitrogen on leached or electro-oxidised surfaces. Voltammetric methods were used to determine sulfur and copper surface coverages at various potentials in sulfide, thiosulfate and ammoniacal copper(II) thiosulfate media. The electro-oxidation of sulfide was examined as a model system in order to identify spectral features and coverage associated with various potential-dependent sulfur layers. In the hydrogen evolution region, a surface layer formed by underpotential deposition in acid and basic media was characterised by a gold-sulfur stretching band, Au-S, attributed in the literature to a monoatomic stretching mode of sulfur bonded to gold. The surface coverage in this potential region was limited to 0.35 ML, representing adsorption in a (3x3)R30 structure. Bands were found to be absent that would have indicated the adsorption of SH– species as has been reported in the literature. A facile change in the position of the Au-S band with potential, unaccompanied by Faradaic processes, was seen when the adsorbed (3x3)R30 sulfur layer was examined in a sulfide-free solution. This may indicate a change in sulfur adsorption sites with potential in the hydrogen evolution region. At potentials above the S II/S0 reversible value in sulfide solutions, the surface coverage increased and S-S bands were observed, indicating the formation of an adsorbed polysulfide species, Au-Sn. A change in the position of the Au-S band was seen to accompany the formation of the S-S bands. As coverage further increased, bands due to S-S-S bending, S-S-S, developed that were characteristic of cyclo octasulfur, S8. On removal from sulfide solution and rinsing, a characteristic SERS spectrum was observed ex situ. The spectrum showed a characteristic S-S at 460 cm-1 and Au-S at 325 cm-1 and was assigned to an adlayer of S8 adsorbed on gold in a crown configuration, Au S8. Gold was polarised in thiosulfate solutions at a potential at which gold dissolution is known to occur. In situ SERS spectra showed bands characteristic of S-S bonding and Au2S to occur after 1 hr for thiosulfate with sodium and ammonium counter-ions and for both systems in the presence of ammonia. XPS studies of polished gold held in sodium thiosulfate under these conditions showed S 2p binding energies corresponding to metal sulfide and pyritic sulfur, S22-. After 72 hrs at the mixed potential in air saturated sodium thiosulfate, SERS investigations showed a spectrum with Au-S8 characteristics. XPS studies on a polished electrode under these conditions showed a third type of S 2p binding with a binding energy between that of pyritic sulfur and S8. The sodium thiosulfate system showed an adsorbed tetrathionate-like surface species, Au-S4O6, to be present at the mixed potential and to disappear with increased potential prior to the formation of bulk S8 via an Au-S8 intermediate. In the presence of the ammonium cation at high potentials, Au-Sn bands appear in the presence of a more intense and broad Au-S characteristic of gold sulfide, Au2S. This was assigned to a mixed gold sulfide/polysulfide phase, Au2S/Sn. With addition of ammonia, the surface species Au S4O6, Au2S/Sn and, tentatively, adsorbed NH3 were observed above the mixed potential. For gold in air-saturated copper(II) ammoniacal thiosulfate media, bands due S-S at 382 cm-1 and symmetric S-O stretching, symS-O, at 1017 cm-1 developed during leaching at the mixed potential. These modes diminished and, when rinsed and examined in water, were replaced by a single band at 255 cm 1 assigned to a metal sulfide stretch. In typical leach solutions, sulfur and copper coverages showed a 2:1 atomic ratio after leaching for 16 h. Ex situ ATR and XPS studies showed that ammonia was adsorbed to a surface copper sulfide. Kinetic studies using atomic absorption spectroscopy (AAS) to measure gold in solution showed that the ammoniacal copper(II) thiosulfate leaching solution exhibited higher dissolution rates in the presence of the sodium counter ion than the ammonium. Thiourea as an additive to thiosulfate solutions was seen to disrupt S-S bonding in both Au-S8 and Au2S/Sn surface structures.
173

High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

Vigderman, Leonid 16 September 2013 (has links)
This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruit-shaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surface-enhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTAB-functionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.
174

Development of Plasmonics-active Nanoconstructs for Targeting, Tracking, and Delivery in Single Cells

Gregas, Molly K. January 2010 (has links)
<p>Although various proof-of-concept studies have demonstrated the eventual potential of a multifunctional SERS-active metallic nanostructures for biological applications such as single cell analysis/measurement and drug delivery, the actual development and testing of such a system in vitro has remained challenging. One key point at which many potentially useful biomethods encounter difficulty lies in the translation of early proof-of-concept experiments in a clean, aqueous solution to complex, crowded, biologically-active environments such as the interior of living cells. The research hypotheses for this work state that multifunctional nanoconstructs can be fabricated and used effectively in conjunction with surface-enhanced Raman scattering (SERS) spectroscopy and other photonics-based methods to make intracellular measurements in and deliver treatment to single cells. The results of experimental work address the specific research aims, to 1) establish temporal and spatial parameters of nanoprobe uptake and modulation, 2) demonstrate targeting of functionalized nanoparticles to the cytoplasm and nucleus of single cells, 3) deliver to and activate drug treatment in cells using a multifunctional nanosystem, and 4) make intracellular measurements in normal and disease cells using external nanoprobes,</p><p>Raman spectroscopy and two-dimensional Raman imaging were used to identify and locate labeled silver nanoparticles in single cells using SERS detection. To study the efficiency of cellular uptake, silver nanoparticles were functionalized with three differently charged SERS/Raman labels and co-incubated with J774 mouse macrophage cell cultures for internalization via normal cellular processes. The surface charge on the nanoparticles was observed to modulate uptake efficiency, demonstrating a dual function of the surface modifications as tracking labels and as modulators of cell uptake. </p><p>To demonstrate delivery of functionalized nanoparticles to specific locations within the cell, silver nanoparticles were co-functionalized with the HIV-1 TAT (49-57) peptide for cell-penetrating and nuclear-targeting ability and p-mercaptobenzoic acid (pMBA) molecules as a surface-enhanced Raman scattering (SERS) label for tracking and imaging. Two-dimensional SERS mapping was used to track the spatial and temporal progress of nanoparticle uptake in PC-3 human prostate cells and to characterize localization at various time points, demonstrating the potential for an intracellularly-targeted multiplexed nanosystem. Silver nanoparticles co-functionalized with the TAT peptide showed greatly enhanced cellular uptake and nuclear localization as compared with the control nanoparticles lacking the targeting moiety. </p><p>The efficacy of targeted nanoparticles as a drug delivery vehicle was demonstrated with development and testing of an anti-cancer treatment in which novel scintillating nanoparticles functionalized with HIV-1 TAT (49-57) for cell-penetrating and nuclear-targeting ability were loaded with tethered psoralen molecules as cargo. The experiments were designed to investigate a nanodrug system consisting of psoralen tethered to a nuclear targeting peptide anchored to UVA-emitting, X-ray luminescent yttrium oxide nanoparticles. Absorption of the emitted UVA photons by nanoparticle-tethered psoralen has the potential to cross-link adenine and thymine residues in DNA located in the nucleus. Such cross-linking by free psoralen following activation with UVA light has previously been shown to cause apoptosis in vitro and an immunogenic response in vivo. Experimental results using the PC-3 human prostate cancer cell line demonstrate that X-ray excitation of these psoralen-functionalized Y2O3 nanoscintillators yields concentration-dependent reductions in cell number density when compared to control cultures containing psoralen-free Y2O3 nanoscintillators. </p><p>The development and demonstration of a small molecule-sensitive SERS-active fiber-optic nanoprobe suitable for intracellular bioanalysis was demonstrated using pH measurements in single living human cells. The proof-of-concept for the SERS-based fiber-optic nanoprobes was illustrated by measurements of intracellular pH in MCF-7 human breast cancer, HMEC-15/hTERT immortalized normal human mammary epithelial, and PC-3 human prostate cancer cells. Clinical relevance was demonstrated by pH measurements in patient biopsy cell samples. The results indicated that that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically relevant small molecules at the single cell level.</p> / Dissertation
175

Nanofluidic biosensing for beta-amyloid detection

Chou, I-Hsien 15 May 2009 (has links)
A nanofluidic biosensor using surface-enhanced Raman scattering (SERS) was developed to detect the β-amyloid (Aβ) protein, one of the biomarkers of Alzheimer’s disease (AD). Recent studies have indicated that investigating changes in relative concentrations of structure specific Aβ oligomers in cerebral spinal fluid (CSF) during the progression of AD could be important indicators for diagnosing AD pre-mortem. However, there is no definitive pre-mortem diagnosis of AD thus far because of the lack of technology available for sensitive Aβ detection. Hence, the development of a system for detecting the structure specific Aβ oligomers, along with the concentrations of these oligomers in CSF, would be useful in the investigation of the molecular mechanisms of Aβ cytotoxicity associated with AD. In this thesis, a nanofluidic trapping device trapping system for detecting biomolecules at sub-picomolar concentrations was developed for using SERS. The device, with a microchannel leading to a nanochannel, carries out dual functions: encouraging sizedependent trapping of gold nanoparticles (60nm) at the entrance of the nanochannel as well as restricting the target molecules between the gaps created by the aggregated nanoparticles. Initially, the trapping capability of the nanofluidic device was tested using fluorescent polystyrene and gold nanoparticles. UV-vis absorption spectroscopy was used to characterize the gold nanoparticle clusters at the entrance to the nanochannel. The device established controlled, reproducible, SERS active sites within the interstices of gold nanoparticle clusters and shifted the plasmon resonance to the near infrared, in resonance with incident laser light. Two strongly Raman active molecules, adenine and Congo red, were used to test the feasibility of the SERS nanofluidic device as a platform for the detection of multiple analytes. The results showed that strong SERS signals were obtained from the nanoparticle clusters at the nanochannel entrance. Once the feasibility of the approach was determined with strong Raman molecules, Aβ was detected using this nanofluidic SERS platform. Distinct surface-enhanced Raman spectra of Aβ was observed in different conformational states as a function of concentration and structure (monomer versus oligomer form) due to Aβ refolding from α-helical to a predominantly β-pleated sheet form. The sensor was also shown to potentially distinguish Aβ from insulin and albumin, confounder proteins in cerebral spinal fluid. Thus, a novel platform was developed to detect picomoler levels of Aβ with the ultimate goal of facilitating the diagnosis and understanding of Alzheimer’s disease by means of detecting structure specific oligomers of Aβ.
176

The Use Of N-polyethereal Polypyrroles In Preconcentration And Surface Enhanced Raman Scattering Studies

Koksel, Bahar 01 February 2009 (has links) (PDF)
Polypyrroles containing polyether pseudocages (PI, PII, PIII) have been synthesized via chemical oxidation of 1,5-bis(1,1-pyrrole)-3-oxabutane (MI), 1,8- bis(1,1-pyrrole)-3,6-dioxahexane (MII), and 1,11-bis(1,1-pyrrole)- 3,6,9-trioxaundecane (MIII) using anhydrous FeCl3 in CHCl3. Because as obtained polymer resins did not give any response toward any cations, they were reduced (undoped) using chemical reducing agents. Tetrabutylammonium hydroxide (TBAOH) was found to be more effective in undoping to obtain more reproducible and reusable polymer resins. It was investigated whether the undoped polymer resins were used for the extraction of rare earth metal ions from the aqueous medium. Among them, only PIII resin can extract La(III), Eu(III) and Yb(III) from their aqueous solutions and can be employed for the preconcentration of these metal ions. For batch extraction of La(III), Eu(III) and Yb(III) at neutral pH values, percent recoveries of 98.0, 90.7 and 87.3, respectively, has been obtained by using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) technique. The sorption capacity is found as 1.3 mg of La(III) per gram of PIII resin. The PIII resin could be reused at least five times without significant change in its sorption capacity. PIII has also been synthesized via electrochemical method to be used in the preparation of Surface Enhanced Raman Scattering (SERS) active substrate. PIII has been polymerized on Indium Tin Oxide (ITO) glass by using constant potential electrolysis. In an electrolyte solution containing 0.05M tetrabutylammonium perchlorate (TBAP), 1.2 V vs. Ag wire (oxidation potential of MIII) was applied for coating and then silver particles were deposited on the surface of PIII coated ITO electrode by reducing Ag(I) in monomer free electrolyte solution electrochemically. As an alternative, another SERS substrate was prepared electrochemically by depositing silver particles directly on ITO glass. The performances of prepared ITO-PIII-Ag and ITO-Ag SERS substrates were evaluated with dilute solutions of brilliant cresyl blue (BCB), crystal violet (CV), para amino benzoic acid (PABA), nicotine and nicotinic acid.
177

Sensitive And Quantitative Determination Of Cysteine By Surface Enhanced Raman Spectrometry Based On Their Induced Aggregates Of Gold And Silver Nanostructures

Yuksel, Recep 01 September 2011 (has links) (PDF)
ABSTRACT SENSITIVE AND QUANTITATIVE DETERMINATION OF CYSTEINE BY SURFACE ENHANCED RAMAN SPECTROMETRY BASED ON THEIR INDUCED AGGREGATES OF GOLD AND SILVER NANOSTRUCTURES Y&uuml / ksel, Recep M.Sc., Department of Chemistry Supervisor: Prof. Dr. M&uuml / rvet Volkan September 2011, 76 pages The synthesis of noble metal nanostructures are an active research area and controlling the shape and the size is a challenging task. In this study, nanostructures with different morphologies were prepared using wet chemical synthesis techniques in the aqueous solutions. Gold and silver nanospheres were produced by reducing and capping agent trisodium citrate. Gold nanorods were synthesized by chemical reduction of HAuCl4 by ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB), AgNO3, and gold nanoseeds (in 1.5 nm diameter) and gold silver core shell nanorods were prepared by addition of silver atoms on the surface of gold nanorods in the presence of CTAB. Parameters that were critical to obtain homogeneous nanostructures were optimized. The characterization of the nanoparticles was performed by UV-VIS spectrometry, High Resolution - Transition Electron Microscopy (HR-TEM), Field Emission - Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Besides, their electromagnetic enhancement properties were demonstrated through SERS measurement of cysteine. Self-assembly or assisted assembly of nanorods or nanospheres into organized arrays allows the realization of their collective properties that arise from the coupling of the optical and electronic properties of the neighbouring individual nanoparticles. In this study cysteine molecule was used as a linker molecule. The controlled addition of cysteine into the gold nanorod solution resulted in their preferential binding to the two ends of the gold nanorods and the formation of gold nanochains. In the usage of gold nanospheres on the other hand, cooperative hydrogen bonding of the cysteine molecules, resulted in the formation of gold nanoclusters. The assembly formation was demonstrated by UV&ndash / vis spectrometry and FE-SEM. Cysteine is a thiol group containing amino acid and deficiency of cysteine results in serious health problems. Therefore, determination of cysteine is an important issue. Herein we report two strategies for the quantitative determination of micromolar concentrations of cysteine by exploiting the interplasmon coupling in Au nanoparticles. One of them is a recently published colorimetric method and the other is a novel SERS method.
178

Development Of A New Immobilization Procedure For Detection Of Staphylococcal Enterotoxin B (seb) And Candida Albicans

Erturkan, Deniz 01 July 2012 (has links) (PDF)
Fast and accurate detection of pathogens such as bacteria, their toxins and viruses at low concentrations is very important. The conventional techniques are time consuming where expensive equipment is required with a consumption of excess amount of blood from patients. Recently, immunosensors are used for the detection of pathogens because they are miniature, sensitive, biocompatible and require low power. According to the Centers for Disease Control and Prevention (CDCP), 76 million people become ill due to food poisoning and 5,000 of them die each year in United States. In addition, SEB causing food poisoning has listed as a bioterrorism agent by CDCP. Thus, accurate and selective detection in short time is very important for SEB detection. Candida albicans (C. albicans) is a yeast-like fungus and causes anxiety, insomnia, constipation, hiatal hernia, panic attacks, denture-induced stomatitis, angular cheilitis, gingivitis and prosthetic implant infections. In addition, it can cause death if the immune system of patient is under failure due to cancer, chemotherapy and AIDS. In this study, a new procedure was developed. A simple and highly selective homogeneous sandwich immunoassay was obtained for ultrasensitive detection of Staphylococcal Enterotoxin B (SEB) using Atomic Force Microscopy (AFM) and Surface Enhanced Raman Scattering (SERS) probe. In the developed procedure, thiolated antibodies were produced and SEB was immobilized on the biosensor surface using these antibodies. In addition, theory of SEB adsorption on a gold surface was studied and the reaction rate constant between SEB and its toxin was calculated. Moreover, C. albicans was detected using the developed procedure by a microscope. Thus, it is proved that, the developed procedure can be used for detection of different pathogens. Furthermore, nonspecific interaction between SEB antibody and BSA was determined in this study. Also, the developed procedure and a procedure found from literature were compared. In the procedure used in the literature (second procedure), self-assembled monolayer (SAM) was formed and antibodies were immobilized on SAM. After formation of sandwich structure, the roughness of gold surface and the minimum concentration of SEB detected were determined by AFM and SERS, respectively.
179

The use of Surface Enhanced Raman Spectroscopy (SERS) for biomedical applications

Chowdhury, Mustafa Habib 25 April 2007 (has links)
Recent advances in nanotechnology and the biotechnology revolution have created an immense opportunity for the use of noble metal nanoparticles as Surface Enhanced Raman Spectroscopy (SERS) substrates for biological sensing and diagnostics. This is because SERS enhances the intensity of the Raman scattered signal from an analyte by orders of 106 or more. This dissertation deals with the different aspects involved in the application of SERS for biosensing. It discusses initial studies performed using traditional chemically reduced silver colloidal nanoparticles for the SERS detection of a myriad of proteins and nucleic acids. It examines ways to circumvent the inherent aggregation problems associated with colloidal nanoparticles that frequently lead to poor data reproducibility. The different methods examined to create robust SERS substrates include the creation of thermally evaporated silver island films on microscope glass slides, using the technique of Nanosphere Lithography (NSL) to create hexagonally close packed periodic particle arrays of silver nanoparticles on glass substrates as well as the use of optically tunable gold nanoshell films on glass substrates. The three different types of SERS surfaces are characterized using UV-Vis absorption spectroscopy, Electron Microscopy (EM), Atomic Force Microscopy (AFM) as well as SERS using the model Raman active molecule trans-1,2-bis(4-pyridyl)ethylene (BPE). Also discussed is ongoing work in the initial stages of the development of a SERS based biosensor using gold nanoshell films for the direct detection of b-amyloid, the causative agent for Alzheimer's disease. Lastly, the use of gold nanoshells as SERS substrates for the intracellular detection of various biomolecules within mouse fibroblast cells in cell culture is discussed. The dissertation puts into perspective how this study can represent the first steps in the development of a robust gold nanoshell based SERS biosensor that can improve the ability to monitor biological processes in real time, thus providing new avenues for designing systems for the early diagnosis of diseases.
180

Abscheidung und Analyse von organischen Duennschichten mit eingelagerten Metallclustern

Stendal, Alexander 05 November 1996 (has links) (PDF)
Im Hochvakuum durch thermisches Verdampfen erzeugte polykristalline Schichten aus den organischen Molekülen: Kupferphthalocyanin (CuPc), N,N'-Dimethyl-Perylendicarboximid (MPP) und Fulleren (C60), werden mittels Transmissions- und Reflexionsspektroskopie auf ihre optischen Eigenschaften hin untersucht und die optischen Konstanten bestimmt. Durch die Abscheidung auf Spaltstrukturen und in Mehrschichtform kann das elektrische Gleichstromverhalten dieser Substanzen in Abhängigkeit von Beleuchtung und Probentemperatur analysiert werden. Die durch die Einbettung von Metallclustern (Gold, Kupfer, Silber) hervorgerufenen Veränderungen besonders im optischen, aber auch im elektrischen Verhalten, werden durch den Vergleich der Meßergebnisse mit ungestörten Proben erhalten. Die Untersuchung der Morphologie mittels TEM-Aufnahmen zeigt, daß die Clusterabmessungen und -formen in Abhängigkeit von der gewählten Materialkombination stark variieren können. Ramanmessungen an Mischsystemen zeigen, neben der für Silber erwarteten Erhöhung des molekularen Signals, auch Kupfer- und Goldeinlagerungen SERS-Effekte. Beim Einbau von Metallclustern in organische Einschichtsolarzellen konnte deren Wirkungsgrad bei Beleuchtung mit einem Sonnensimulator (AM2) bis zu einem Faktor ca. 3 erhöht werden.

Page generated in 0.0473 seconds