Spelling suggestions: "subject:"[een] SHEAR STRENGTH"" "subject:"[enn] SHEAR STRENGTH""
251 |
Adhesive Bonding of Low Moisture Hickory Veneer with Soy-based AdhesiveWykle, Cody James 10 June 2019 (has links)
Low moisture veneer and regions of sapwood within hickory engineered wood flooring bonded with soy-flour adhesive are thought to be factors leading to potential performance deficiencies. The goal of this research was to gain a broader understanding of bonding low moisture hickory veneer with soy-based adhesive. Soyad® is of particular interest due to its novel cross-linking chemistry. Impacts of moisture content and wood region (heartwood versus sapwood) were analyzed with dry and wet shear bond strength tests, measurement of percent wood failure, lathe check characterization, and adhesive bondline thickness and penetration depth measurement. Impact of wood region and type (hickory versus red oak) was assessed by comparing wood buffering capacity and delamination following three-cycle water soaking.
Dry and wet shear strength values met expectations for engineered wood flooring yet percentage wood failure results were uniformly very low for all combinations of moisture levels and wood regions. In contrast, delamination following wet and dry cycling was minor and within minimum requirements for all specimens tested. The influence of moisture level, wood region and type were inconsistent; statistically significant relationships were not evident within the moisture range studied. However, different wood regions and types exhibited differing veneer buffering capacities that had potential to interfere with pH requirements of Soyad®. Additional study of buffering capacity and resin cure is recommended to determine the significance of the buffering capacity results found in this study. / Master of Science / Performance issues including debonding and delamination have been reported for hickory engineered wood flooring products constructed using a soy-flour based adhesive. Sapwood regions within the composite and extremely low moisture veneer were provided by industry as possible factors that resulted in performance deficiencies. The goal of this research project was to gain a broader understanding of bonding low moisture hickory veneer with Soyad® adhesive. Soy-flour adhesive systems offer many environmental, health, and durability advantages. Soyad® is of particular interest due to its use of natural, renewable soy flour, a novel cross-linking resin, and no added formaldehyde. Test specimens were prepared using heartwood of hickory and red oak and sapwood of hickory. Analytical tests included determination of certain chemical properties of the adhesive and wood veneer, measurement of strength properties of the adhesive bond, and assessment of delamination tendencies of bonded panels following water soaking. Results indicate that moisture levels and the different growth regions and wood type had an inconsistent impact on the bond strengths yet percent wood failure was uniformly low and considered unacceptable by industry. Although this research established a foundation of basic knowledge, more information about adhesive bonding of wood with the recently developed soy based adhesives is needed to optimize the systems and provide technological advancements that lead to more efficient and safe utilization of woody materials from the forest.
|
252 |
Processing and Properties of Die-attachment on Copper Surface by Low-temperature Sintering of Nanosilver PasteZheng, Hanguang 30 May 2012 (has links)
As the first level interconnection in electronic packages, chip attachment plays a key role in the total packaging process. Sintered nanosilver paste may be used as a lead-free alternative to solder for die-attachment at sintering temperature below 300 °C without applying any pressure. Typically, the substrate, such as direct bond copper (DBC) substrates, has surface metallization such as silver or gold to protect the copper surface from oxidation during the sintering process. This study focused on developing techniques for die-attachment on pure copper surface by low-temperature sintering of nanosilver paste. One of the difficulties lies in the need for oxygen to burn off the organics in the paste during sintering. However, the copper surface would oxidize, preventing the formation of a strong bond between sintered silver and copper substrate.
Two approaches were investigated to develop a feasible technique for attachment. The first approach was to reduce air pressure as a means of varying the oxygen partial pressure and the second approach was to introduce inert gas to control the sintering atmosphere. For the first method, die-shear tests showed that increasing the oxygen partial pressure (PO₂ from 0.04 atm to 0.14 atm caused the bonding strength to increase but eventually decline at higher partial pressure. Scanning electron microscopy (SEM) imaging and energy dispersive spectroscopy (EDS) analysis showed that there was insufficient oxygen for complete organics burnout at low PO₂ condition, while the copper surface was heavily oxidized at high PO₂ levels, thus preventing strong bonding. A maximum bonding strength of about average 8 MPa was attained at about PO₂ = 0.08 atm. With the second method, the die-shear strength showed a significant increase to about 24 MPa by adjusting the oxygen exposure temperature and time during sintering.
The processing conditions necessary for bonding large-area chips (6 mm à 6 mm) directly on pure copper surface by sintering nanosilver paste was also investigated. A double-print process with an applied sintering pressure of less than 5 MPa was developed. Die-shear test of the attached chips showed an average bonding strength of over 40 MPa at applied pressure of 3 MPa and over 77 MPa under 12 MPa sintering pressure. SEM imaging of the failure surface showed a much denser microstructure of sintered silver layer when pressure was applied. X-ray imaging showed a bond layer almost free of voids. Because the samples were sintered in air, the DBC surface showed some oxidation. Wirebondability test of the oxidized surface was performed with 250 μm-diameter aluminum wires wedge-bonded at different locations on the oxidized surface. Pull test results of the bonded wires showed a minimum pull-strength of 400 gram-force, exceeding the minimum of 100-gf required by the IPC-TM-650 test standard. / Master of Science
|
253 |
Probabilistic Post-Liquefaction Residual Shear Strength Analyses of Cohesionless Soil Deposits: Application to the Kocaeli (1999) and Duzce (1999) EarthquakesLumbantoruan, Partahi Mamora Halomoan 31 October 2005 (has links)
Liquefaction of granular soil deposits can have extremely detrimental effects on the stability of embankment dams, natural soil slopes, and mine tailings. The residual or liquefied shear strength of the liquefiable soils is a very important parameter when evaluating stability and deformation of level and sloping ground. Current procedures for estimating the liquefied shear strength are based on extensive laboratory testing programs or from the back-analysis of failures where liquefaction was involved and in-situ testing data was available. All available procedures utilize deterministic methods for estimation and selection of the liquefied shear strength. Over the past decade, there has been an increasing trend towards analyzing geotechnical problems using probability and reliability. This study presents procedures for assessing the liquefied shear strength of cohesionless soil deposits within a risk-based framework. Probabilistic slope stability procedures using reliability methods and Monte Carlo Simulations are developed to incorporate uncertainties associated with geometrical and material parameters. The probabilistic methods are applied to flow liquefaction case histories from the 1999 Kocaeli/Duzce, Turkey Earthquake, where extensive liquefaction was observed. The methods presented in this paper should aid in making better decisions about the design and rehabilitation of structures constructed of or atop liquefiable soil deposits. / Master of Science
|
254 |
Load capacity of reinforced concrete continuous deep beamsYang, Keun-Hyeok, Ashour, Ashraf January 2008 (has links)
No / Most codes of practice, such as EC2 and ACI 318-05, recommend the use of strut-and-tie models for the design of reinforced concrete deep beams. However, studies on the validity of the strut-and-tie models for continuous deep beams are rare. This paper evaluates the strut-and-tie model specified by ACI 318-05 and mechanism analysis of the plasticity theory in predicting the load capacity of 75 reinforced concrete continuous deep beams tested in the literature. The influence of such main parameters as compressive strength of concrete, shear span-to-overall depth ratio, main longitudinal bottom reinforcement, and shear reinforcement on the load capacity is also investigated using both methods and experimental results. Experimental results were closer to the predictions obtained from the mechanism analysis than the strut-and-tie model. The strut-and-tie model highly overestimated the load capacity of continuous deep beams without shear reinforcement.
|
255 |
Experimental investigation on continuous reinforced SCC deep beams and Comparisons with Code provisions and modelsKhatab, Mahmoud A.T., Ashour, Ashraf, Sheehan, Therese, Lam, Dennis 14 November 2016 (has links)
Yes / The test results on eight two-span deep beams made of self-compacting concrete (SCC) are presented and discussed in this paper. The main parameters investigated were the shear span-to-depth ratio, and the amount and configuration of steel reinforcement. All beams failed due to a major diagonal crack formed between the applied mid-span load and the intermediate support separating the beam into two blocks: the first one rotated around the end support leaving the other block resting on the other two supports. Both concrete compressive strength and web reinforcement had a major effect in controlling the shear capacity of the beams tested. For the shear span-to-depth ratio considered, the vertical web reinforcement had more influence on the shear capacity of the specimens than the horizontal web reinforcement. The shear provisions of the ACI 318M-11 are unconservative for most of the beams tested. Comparisons of test results with the strut-and-tie model (STM) suggested by ACI 318M-11, EC2 and CSA23.4-04 showed that the predictions are reasonable for continuous deep beams made with low and medium compressive strength. Although the equation suggested by ACI 318M-11 is very simple, its prediction is more accurate than the STM suggested by different design codes. / This research investigation was funded by the Higher Education Ministry in The Libyan Government.
|
256 |
Practical approach to predict the shear strength of fibre-reinforced clayMirzababaei, M., Mohamed, Mostafa H.A., Arulrajah, A., Horpibulsuk, S., Anggraini, V. 22 September 2017 (has links)
Yes / Carpet waste fibres have a higher volume to weight ratios and once discarded into landfills, these fibres occupy a larger volume than other materials of similar weight. This research evaluates the efficiency of two types of carpet waste fibre as sustainable soil reinforcing materials to improve the shear strength of clay. A series of consolidated undrained (CU) triaxial compression tests were carried out to study the shear strength of reinforced clays with 1%, to 5% carpet waste fibres. The results indicated that carpet waste fibres improve the effective shear stress ratio and deviator stress of the host soil significantly. Addition of 1%, 3% and 5% carpet fibres could improve the effective stress ratio of the unreinforced soil by 17.6%, 53.5% and 70.6%, respectively at an initial effective consolidation stress of 200 kPa. In this study, a nonlinear regression model was developed based on a modified form of the hyperbolic model to predict the relationship between effective shear stress ratio, deviator stress and axial strain of fibre-reinforced soil samples with various fibre contents when subjected to various initial effective consolidation stresses. The proposed model was validated using the published experimental data, with predictions using this model found to be in excellent agreement.
|
257 |
Influence of inclined web reinforcement on reinforced concrete deep beams with web openings.Yang, Keun-Hyeok, Chung, H-S., Ashour, Ashraf 09 1900 (has links)
Yes / This paper reports the testing of fifteen reinforced concrete deep beams with openings. All beams tested had the same overall geometrical dimensions. The main variables considered were the opening size and amount of inclined reinforcement. An effective inclined reinforcement factor combining the influence of the amount of inclined reinforcement and opening size on the structural behaviour of the beams tested is proposed. It was observed that the diagonal crack width and shear strength of beams tested were significantly dependent on the effective inclined reinforcement factor that ranged from 0 to 0.318 for the test specimens. As this factor increased, the diagonal crack width and its development rate decreased, and the shear strength of beams tested improved. Beams having effective inclined reinforcement factor more than 0.15 had higher shear strength than that of the corresponding solid beams. A numerical procedure based on the upper bound analysis of the plasticity theory was proposed to estimate the shear strength and load transfer capacity of reinforcement in deep beams with openings. Predictions obtained from the proposed formulas have a consistent agreement with test results.
|
258 |
Behaviour of interlocking mortarless hollow block walls under in-plane loadingSafiee, N.A., Nasir, N.A.M., Ashour, Ashraf, Bakar, N.A. 31 January 2018 (has links)
Yes / Experimental study of five full scale masonry wall panels subjected to prescibed pre-compressive vertical loading and increasing in-plane lateral loading is discussed. All five walls were constructed using interlocking mortarless load bearing hollow concrete blocks. The behaviour of wall in term of deflections along the wall height, shear strength, mortarless joint behaviour and local and overall failures under increasing in-plane lateral loading and pre-compressive vertical loading are reported and analysed. Simple strut-and-tie models are also developed to estimate the ultimate in-plane lateral capacity of the panel walls tested. The results indicate that, as the pre-compressive load increases, the in-plane lateral load capacity of walls increases. All walls tested failed due to diagonal shear and/or moderate toe crushing depending on the level of the pre-compressive load. The proposed strut-and-tie models were able to give reasonable predictions of the walls tested.
|
259 |
Direct simple shear tests : Examining the impact of the shearing velocity / Direkta skjuvförsök : En undersökning av skjuvningshastighetens påverkanOlsson, Magnus January 2024 (has links)
This report presents a quantitative investigation into the impact of shearing velocity variation on the obtained shear strength from DSS tests on varved clays originating from the Uppsala region, particulary within the planned reconstruction route of road 55 between Örsundsbro and Kvarnbolund in eastern Sweden. Varved clays are prevalent in this region, and understanding their mechanical properties are crucial for infrastructure projects such as road improvements.The study employs a comprehensive quantitative approach, involving the development and analysis of extensive data and statistics derived from various field and laboratory methods, such as vane tests, CPT tests, undisturbed routine analyses and DSS tests. These tests are supplemented with disturbed routine analyses, CRS tests and ground water measurments specific to the road 55 area.The results demonstrate that the shearing velocity does not correlate with the obtained shear strength. The shear strength remains independent of the shearing velocity.Consequently, the conclusion drawn is that increasing the shearing velocity during DSS tests for varved clays ias advisable, as it does not significantly affect the test results. This finding suggests the potential for improving testing efficency without compromising accuracy in geotechnical assessments for road construction projects with similar geotechnical conditions such as the road 55 reconstruction project.
|
260 |
Performance of penetrometers in deepwater soft soil characterisationLow, Han Eng January 2009 (has links)
Offshore developments for hydrocarbon resources have now progressed to water depths approaching 2500 m. Due to the difficulties and high cost in recovering high quality samples from deepwater site, there is increasing reliance on in situ tests such as piezocone and full-flow (i.e. T-bar and ball) penetration tests for determining the geotechnical design parameters. This research was undertaken in collaboration with the Norwegian Geotechnical Institute (NGI), as part of a joint industry project, to improve the reliability of in situ tests in determining design parameters and to improve offshore site investigation practice in deepwater soft sediments. In this research, a worldwide high quality database was assembled and used to correlate intact and remoulded shear strengths (measured from laboratory and vane shear tests) with penetration resistances measured by piezocone, T-bar and ball penetrometers. The overall statistics showed similar and low levels of variability of resistance factors for intact shear strength (N-factors) for all three types of penetrometer. In the correlation between the remoulded penetration resistance and remoulded shear strength, the resistance factors for remoulded shear strength (Nrem-factors) were found higher than the N-factors. As a result, the resistance sensitivity is less than the strength sensitivity. The correlations between the derived N-factors and specific soil characteristics indicated that the piezocone N-factors are more influenced by rigidity index than those for the T-bar and ball penetrometers. The effect of strength anisotropy is only apparent in respect of N-factors for the T-bar and ball penetrometers correlated to shear strengths measured in triaxial compression. On the other hand, the Nrem-factors showed slight tendency to increase with increasing strength sensitivity but were insensitive to soil index properties. These findings suggest that the full-flow penetrometers may be used to estimate remoulded shear strength and are potentially prove more reliable than the piezocone in estimating average or vane shear strength for intact soil but the reverse is probably true for the estimation of triaxial compression strength.
|
Page generated in 0.0519 seconds