Spelling suggestions: "subject:"[een] STRAIN GAUGE"" "subject:"[enn] STRAIN GAUGE""
31 |
Additive Manufacturing of Strain Gauges : A Study of the Feasibility of Printing Strain Gauges Using Inkjet PrintingWennersten, Karin January 2022 (has links)
Additive manufacturing (AM) also commonly known as 3D-printing is a manufacturing method which creates parts from adding layer into another. In the field of printed electronics Inkjet printing (IJP) and Aerosol Jet printing (AJP) are the most common AM techniques. IJP and AJP are non-contact-based printing techniques where ink is deposited on a surface with droplets. AJP aerosolizes the ink into a mist which is deposited on a surface according to the predetermined pattern. IJP instead produces singular droplets when printing. These printing methods have been used for manufacturing various printed electronics such as strain gauges which has been the focus of this project. The purpose of this thesis was to investigate the feasibility of printing strain gauges. Through a literature study the overall function and use for strain gauges and various printing methods were investigated, as well as previous studies related to printed strain gauges using AJP and IJP. To further investigate one of these techniques, strain gauges were printed using Inkjet printing. The sensors were printed using two different inks, one containing silver particles and the other containing constantan particles. The strain gauges were also printed on various substrates such as Polyimide (PI) and Polyetheretherketone (PEEK), to determine the best material combination. The silver strain gauges were then sintered in an oven while the constantan sensors were sintered using photonic sintering. To evaluate each ink-substrate combination several tests was performed throughout the printing and sintering process. A tape test was used to determine adhesion, SEM analysis was performed to study the effect of the sintering process and the resistance was measured to calculate the conductivity and study the printability on different substrates. To characterise the printed strain gauges a bending test was performed where the change in resistance was measured with changing strain. The output was also studied over time to determine the stability of the printed sensors. The silver ink showed overall better properties compared to the constantan ink, which could be due to that the silver ink has been more developed than the constantan ink. The resistivity of the silver ink was calculated to 7.0E-07 Ωm and the constantan ink to 2.23E-05 Ωm. The average gauge factor for the silver ink printed on PI was calculated to GFavg~1.6 at low strain and GFavg~2.1 at high strain, the silver samples printed on PEEK was GFavg~2.4 at low strain and GFavg~2.3 at higher strain, and the constantan samples was determined to GFavg~2.7 during loading at low strain and GFavg~17 at high strain due to deformation. Some of the samples printed with silver ink showed quite linear behaviour while the samples printed with constantan deformed when applying high stress. The silver samples printed on PEEK showed more hysteresis compared to the silver samples printed on PI, but the PEEK samples showed a better stability over time compared to PI. The thesis shows that it is possible to manufacture strain gauges, but the result depends a lot on the ink and substrate material chosen. Silver inks has been developed over a long period and thus making it easier to handle and the result is better compared to newer inks such as constantan.
|
32 |
Effect of aeroelasticity in tow tank strain gauge measurements on a NACA 0015 airfoilLi, Sihao January 1993 (has links)
No description available.
|
33 |
Wireless Strain Measurement with Surface Acoustic Wave SensorsFriedlander, Jeffrey B. 28 July 2011 (has links)
No description available.
|
34 |
Desenvolvimento de um sistema minimamente invasivo para monitorar a pressão intracraniana / Development of a minimally invasive system to monitor the intracranial pressureVilela, Gustavo Henrique Frigieri 02 December 2010 (has links)
A pressão intracraniana (PIC) é um dos principais parâmetros neurológicos em animais e humanos. A PIC é uma função da relação entre o conteúdo da caixa craniana (parênquima cerebral, líquido cefalorraquiano e sangue) e o volume do crânio. O aumento da PIC (hipertensão intracraniana) pode acarretar graves efeitos fisiológicos ou até mesmo o óbito em pacientes que não receberem rapidamente os devidos cuidados, os quais incluem o monitoramento em tempo real da PIC. Todos os métodos de monitoramento da PIC atualmente utilizados são invasivos, ou seja, é necessário introduzir um sensor de pressão no sistema nervoso central, acarretando aos pacientes riscos de infecções e traumas decorrentes do método. Neste trabalho desenvolvemos um método minimamente invasivo de monitoramento da pressão intracraniana, que consiste na utilização de sensores de deformação do tipo strain gauge fixados sobre a calota craniana. Os sinais oriundos deste sensor foram amplificados, filtrados e enviados para um computador com software apropriado para análise e armazenamento dos dados. O trabalho aqui apresentado objetivou os testes "in vivo" do sistema, onde foi utilizada mais de uma centena de animais em diversos testes, sendo que em todos os casos os resultados foram satisfatórios, apontando a eficácia do método. / The intracranial pressure (ICP) is one of the most important neurological parameter in animals and humans. The ICP is a function of the relation between the contents of the skull (brain parenchyma, cerebrospinal fluid and blood) and the volume of the skull. The increase in ICP (intracranial hypertension) may cause serious physiological effects and death in patients that do not receive appropriate care quickly, which includes real-time monitoring of ICP. All monitoring methods currently used in ICP are invasive, ie requiring invasion of the central nervous system by a pressure sensor, causing infections and traumas risks to patients. In this work we present a new minimally invasive method to monitor the intracranial pressure. This uses strain gauge deformation sensors, externally glued on the skull. The signal from this sensor is amplified, filtered and sent to a computer with appropriate software for analysis and data storage. "In vitro" and "in vivo" experiments let to the following results: (1) Our minimally invasive system is capable of adequately monitoring the ICP. (2) The measurements are in real and online time providing excellent signal and stability. (3) Simultaneous comparison with invasive methods not only validated our results but showed increased performance. The equipment cost effective will allow the use of our system in the Public Health System, with a important social aspect of our contribution.
|
35 |
Experimental Measurement of Lateral Force in a Submerged Single Heaving Buoy Wave Energy ConverterSavin, Andrej January 2012 (has links)
The search for new solutions for the generation of energy is becoming more and more important for our future. Big arguments and disagreements on e.g. the questions of gas transport or the dependence on energy supplied by other countries raise demands on the development of new forms of alternative energy resources. Wave power is one of the main sources of renewable energy due to the high power density stored in ocean waves. Nevertheless, the dynamic forces of waves are so large that serious questions popped up on how to design a system which could work even in an unfavourable wave climate or could at least retain working capabilities after big storms without significant damages. This thesis studies the reliability of the mechanical parts of a linear direct driven permanent magnet generator. The results of offshore experiment where strain gauge sensors instrumented on the capsule and the inner framework structure are presented. Stress estimation analyses using strain gauges are carried out. A method for measuring forces and moments in the mechanical structure of the WEC is developed. Evaluation of the lateral force acting on the outer structure is a key factor for the design and construction of the WEC. A method for the measurement of the lateral force acting on the capsule has been developed. A study of the inclination angle between the Wave Energy Converter and the floating buoy has been carried out. The aim of this work is to contribute to the development of wave energy conversion system, and especially to the estimation of structural loads which are important for the survivability of the system under hard sea states. This work is a step that may influence future design of wave energy devices in terms of material aspect, survivability in a hard wave climate and cost-effective renewable energies.
|
36 |
On the Experimental Determination of Damping of Metals and Calculation of Thermal Stresses in Solidifying ShellsÅberg, Jonas January 2006 (has links)
This thesis explores experimentally and theoretically two different aspects of the properties and behaviour of metals: their ability to damp noise and their susceptibility to crack when solidifying. The first part concerns intrinsic material damping, and is motivated by increased demands from society for reductions in noise emissions. It is a material’s inherent ability to reduce its vibration level, and hence noise emission, and transform its kinetic energy into a temperature increase. To design new materials with increased intrinsic material damping, we need to be able to measure it. In this thesis, different methods for measurement of the intrinsic damping have been considered: one using Fourier analysis has been experimentally evaluated, and another using a specimen in uniaxial tension to measure the phase-lag between stress and strain has been improved. Finally, after discarding these methods, a new method has been developed. The new method measures the damping properties during compression using differential calorimetry. A specimen is subjected to a cyclic uniaxial stress to give a prescribed energy input. The difference in temperature between a specimen under stress and a non-stressed reference sample is measured. The experiments are performed in an insulated vacuum container to reduce convective losses. The rate of temperature change, together with the energy input, is used as a measure of the intrinsic material damping in the specimen. The results show a difference in intrinsic material damping, and the way in which it is influenced by the internal structure is discussed. The second part of the thesis examines hot cracks in solidifying shells. Most metals have a brittle region starting in the two-phase temperature range during solidification and for some alloys this region extends as far as hundreds of degrees below the solidus temperature. To calculate the risk of hot cracking, one needs, besides knowledge of the solidifying material’s ability to withstand stress, knowledge of the casting process to be able to calculate the thermal history of the solidification, and from this calculate the stress. In this work, experimental methods to measure and evaluate the energy transfer from the solidifying melt have been developed. The evaluated data has been used as a boundary condition to numerically calculate the solidification process and the evolving stress in the solidifying shell. A solidification model has been implemented using a fixed-domain methodology in a commercial finite element code, Comsol Multiphysics. A new solidification model using an arbitrary Lagrange Eulerian (ALE) formulation has also been implemented to solve the solidification problem for pure metals. This new model explicitly tracks the movement of the liquid/solid interface and is much more effective than the first model. / QC 20100929
|
37 |
Advanced finite element analysis for strain measurement in a threaded connectionBulkai, Andras January 2007 (has links)
There is no established method of measuring load accurately in a threaded connection at working temperatures exceeding 500°C. At these conditions conventional methods can not be used due to the sensitivity of the instruments and it is suggested that a non contact method should be used. The laser strain gauge was developed by the Loughborough University Optical Research Group and it is a non contact way of measuring surface strain. With the help of finite element analysis (FEA) a special nut was developed that can be used to measure the load on the connection by relating the surface strain of the nut to the load. Experimental work later revealed that due to the threads sticking in the connection there is hysteresis present between the load and surface strain relationship. To eliminate the hysteresis a new part was added to the connection which could be used to relate the surface strain on it to the load without any hysteresis. This new part was a specially designed washer with three grooves to allow easy access for the user to measure the surface strain using the laser strain gauge. Part of the design specification was that the load has to be determined to an accuracy of 0.5%. Using sensitivity analysis the washer was analysed in terms of how manufacturing imperfections affect the accuracy of the load measuring device. The results revealed that to achieve the required 0.5% accuracy the washer would have to be manufactured to very tight tolerances. To achieve these tight tolerances the manufacturing process would not be cost effective so it was proposed that individual calibration is required for each load measuring washer. Tests showed that with sufficient calibration the specially designed washer and the laser strain gauge can be combined and used as an accurate non contact load measuring device. As it is a non contact method it can be used in extreme environments including high temperatures. This thesis describes how background research, finite element analysis and experimental testing were used to develop the load measuring washer. Also it is shown, how in-depth sensitivity analysis was used to determine the accuracy of the prototype and that how manufacturing imperfections influence the working life of a threaded connection.
|
38 |
Cartographie d'un champ de pression induit par l'occlusion dentaire / Pressure mapping sensor array for dental occlusion analysisKervran, Yannick 06 January 2016 (has links)
Le diagnostic de l'occlusion dentaire reste actuellement un défi majeur pour les chirurgiens-dentistes. Des outils dédiés existent, comme le papier à articuler et le T-Scan®, mais sont limités pour diverses raisons. L'objectif de cette thèse est alors de développer un nouvel outil sous forme de matrice de capteurs de pression sur substrat flexible alliant les avantages des outils nommés précédemment, à savoir un produit électronique, informatisé et de faible épaisseur pour ne pas être intrusif. Nous avons choisi une technologie piézorésistive et l'utilisation de jauges de contrainte en silicium microcristallin. Ce matériau est déposé à basse température (< 200°C) directement sur substrat Kapton® par PECVD (Plasma Enhanced Chemical Vapor Deposition) dans une perspective de faible coût. Ces jauges ont d'abord été caractérisées mécaniquement et électriquement lors de tests de courbure. Les facteurs de jauge longitudinaux et transversaux du silicium microcristallin ont été étudiés afin de maîtriser son comportement sous déformation. Les dispositifs restent fonctionnels jusqu'à des contraintes de 0,6 %, à partir de laquelle des dégradations apparaissent. Ces valeurs de contraintes permettent d'atteindre des rayons de courbure de l'ordre du millimètre pour des substrats de 25 µm d'épaisseur. Deux types de matrices ont ensuite été développées : une première de 800 jauges pour l'étude de la surface occlusale d'une dent puis une seconde de 6400 jauges pour l'étude d'une moitié de mâchoire. Dans les deux cas, des corrélations intéressantes entre le papier à articuler et nos réponses électriques ont été observées lors de caractérisations en conditions « semi-réelles » à l'aide d'un articulateur dentaire. Ces deux prototypes ont ainsi permis une preuve de concept fonctionnelle de l'objectif visé en utilisant des jauges en silicium microcristallin. / Dental occlusion diagnosis is still a major challenge for dentists. A couple of tools are dedicated to occlusal analysis, such as articulating papers and the T-Scan® system, but they are limited for various reasons. That's why, the goal of this thesis is to develop a novel system consisting in pressure sensor arrays on flexible substrates combining the positive aspects of both previously cited tools: an electronic and computerized system, on a very thin non-invasive flexible substrate. We chose a piezoresistive technology based on microcrystalline silicon strain gauges and 25-µm- or 50-µm-thick Kapton® substrates. Microcrystalline silicon is deposited directly on plastic at low temperature (< 200°C) using PECVD technique (Plasma Enhanced Chemical Vapor Deposition) in a cost-effective solution perspective. Strain gauges have firstly been characterized using bending tests. Longitudinal and transversal gauge factors have been studied in order to understand the behavior of our deposited materials under bending. Those gauges remained functional until strains up to 0.6 % and degradations appeared for higher values. These values correspond to bending radius on the order of 1 mm for 25-µm-thick substrates. Then, those gauges have been integrated in arrays with two different designs: one was an 800-element array to study the occlusal surface of one tooth, and the second was a 6400-element array to study the occlusal surface of a hemiarcade. Those prototypes have showed interesting correlations between articulating paper marks and our electrical responses during characterizations using a dental articulator to simulate a human jaw. Thus, we have developed in this work a proof-of-concept of a flexible strain sensor using microcrystalline silicon dedicated to dental occlusion diagnosis.
|
39 |
Desenvolvimento de um sistema minimamente invasivo para monitorar a pressão intracraniana / Development of a minimally invasive system to monitor the intracranial pressureGustavo Henrique Frigieri Vilela 02 December 2010 (has links)
A pressão intracraniana (PIC) é um dos principais parâmetros neurológicos em animais e humanos. A PIC é uma função da relação entre o conteúdo da caixa craniana (parênquima cerebral, líquido cefalorraquiano e sangue) e o volume do crânio. O aumento da PIC (hipertensão intracraniana) pode acarretar graves efeitos fisiológicos ou até mesmo o óbito em pacientes que não receberem rapidamente os devidos cuidados, os quais incluem o monitoramento em tempo real da PIC. Todos os métodos de monitoramento da PIC atualmente utilizados são invasivos, ou seja, é necessário introduzir um sensor de pressão no sistema nervoso central, acarretando aos pacientes riscos de infecções e traumas decorrentes do método. Neste trabalho desenvolvemos um método minimamente invasivo de monitoramento da pressão intracraniana, que consiste na utilização de sensores de deformação do tipo strain gauge fixados sobre a calota craniana. Os sinais oriundos deste sensor foram amplificados, filtrados e enviados para um computador com software apropriado para análise e armazenamento dos dados. O trabalho aqui apresentado objetivou os testes "in vivo" do sistema, onde foi utilizada mais de uma centena de animais em diversos testes, sendo que em todos os casos os resultados foram satisfatórios, apontando a eficácia do método. / The intracranial pressure (ICP) is one of the most important neurological parameter in animals and humans. The ICP is a function of the relation between the contents of the skull (brain parenchyma, cerebrospinal fluid and blood) and the volume of the skull. The increase in ICP (intracranial hypertension) may cause serious physiological effects and death in patients that do not receive appropriate care quickly, which includes real-time monitoring of ICP. All monitoring methods currently used in ICP are invasive, ie requiring invasion of the central nervous system by a pressure sensor, causing infections and traumas risks to patients. In this work we present a new minimally invasive method to monitor the intracranial pressure. This uses strain gauge deformation sensors, externally glued on the skull. The signal from this sensor is amplified, filtered and sent to a computer with appropriate software for analysis and data storage. "In vitro" and "in vivo" experiments let to the following results: (1) Our minimally invasive system is capable of adequately monitoring the ICP. (2) The measurements are in real and online time providing excellent signal and stability. (3) Simultaneous comparison with invasive methods not only validated our results but showed increased performance. The equipment cost effective will allow the use of our system in the Public Health System, with a important social aspect of our contribution.
|
40 |
Měření hmotnosti pomocí tenzometrů z elektronických vah / Weight Measurement with Bathroom Scale Strain GaugesŠenfluk, Petr January 2014 (has links)
The aim of the thesis is weigh measurement using strain gauges from cheap digital scales. Work describes problems connected with using strain gauges as temperature compensation and requirements for accurate voltage reference and summarize function and wiring of chaep digital scales using four strain gauges. Result of work is design of an electrical circuit for weigh measurement using four strain gauges from analyzed scale.
|
Page generated in 0.0747 seconds